
6.057
Introduction to MATLAB

1

Course Layout

●
●
●

●
●
●

2

MATLAB Basics
●

○
○

●
○
○

3

Outline

4

Getting Started

●

●
○

5

https://matlab.mathworks.com/

Current Directory

Editor

Command Window

Workspace

Details

6

MATLAB R2018a. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Customization

7

●

●

MATLAB R2018a. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Installing Toolboxes
●

●

● ○
○
○
○
○
○

8

MATLAB R2018a. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Making Folders
●
●

●

MATLAB
↳ IAP MATLAB

↳ Day1 9

MATLAB R2018a. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Help/Docs

● help
○

●
○ help sin

■

●

●
○ doc sin

○ docsearch sin trigonometric

10

Outline

11

Scripts: Overview

●
○
○
○

●
○ edit MyFileName.m
○

12

Scripts: Some notes

●
○
○
○
○

●
●

13

Exercise: Scripts

●
●

Hello world!
I am going to learn MATLAB!

disp(...)
'This is a string'

14

Outline

15

Variable Types

●
○

●
○

■
○

■

●
●

16

Naming Variables

●

myNumberVariable = 3.14
myStringVariable = 'hello world!'

●
○
○
○ var1 Var1

17

Naming Variables (cont.)

i, j:

pi:

ans:

Inf, -Inf:

NaN:

ii, jj, kk, 18

Scalars

●

○

●

●

○ a = 10

○ c = 1.3 * 45 - 2 * a

○ cooldude = 13/3;

19

Arrays

●
●

○
○

MATLAB makes vectors easy!
That’s its power!

20

Row vectors
●

○ row = [1 2 3.2 4 6 5.4];
○ row = [1, 2, 4, 7, 4.3, 1.1];

●

●

21

."5-"#�WFSTJPO������$PVSUFTZ�PG�5IF�.BUI8PSLT
�*OD��6TFE�XJUI�QFSNJTTJPO��."5-"#�BOE�4JNVMJOL�BSF�SFHJTUFSFE�USBEFNBSLT�PG�5IF�.BUI8PSLT
�*OD���4FF�
XXX�NBUIXPSLT�DPN�USBEFNBSLT�GPS�B�MJTU�PG�BEEJUJPOBM�USBEFNBSLT���0UIFS�QSPEVDU�PS�CSBOE�OBNFT�NBZ�CF�USBEFNBSLT�PS�SFHJTUFSFE�USBEFNBSLT�PG�UIFJS�SFTQFDUJWF�IPMEFST�

www.mathworks.com/trademarks

Column vectors
●

○ col = [1; 2; 3.2; 4; 6; 5.4];

●

●

��

."5-"#�WFSTJPO������$PVSUFTZ�PG�5IF�.BUI8PSLT
�*OD��6TFE�XJUI�QFSNJTTJPO��."5-"#�BOE�4JNVMJOL�BSF�SFHJTUFSFE�USBEFNBSLT�PG�5IF�.BUI8PSLT
�*OD���4FF�
XXX�NBUIXPSLT�DPN�USBEFNBSLT�GPS�B�MJTU�PG�BEEJUJPOBM�USBEFNBSLT���0UIFS�QSPEVDU�PS�CSBOE�OBNFT�NBZ�CF�USBEFNBSLT�PS�SFHJTUFSFE�USBEFNBSLT�PG�UIFJS�SFTQFDUJWF�IPMEFST�

www.mathworks.com/trademarks

Size and length
●

○
○
○

23

Matrices
●

○
■ a= [1 2;3 4];

●

a = [1 2];
b = [3 4];
c = [5;6];
d = [a;b];
e = [d c];
f = [[e e];[a b a]];
str = ['Hello, I am ' 'John'];str = ['Hello, I am ' 'John'];

● 24

save/clear/load
●

○ save myFile a b
○
○
○

●
○ clear a b
○

●
○ load myFile
○

25

Exercise: Variables

● start clock
● start
● start help clock

● start startString startTime

● datestr
startString

26

Exercise: Variables II

● load
●

● disp
●

27

Outline

28

Basic Scalar Operations

●

●

○ 7/45
○ (1+1i)*(1+2i)
○ 1/0
○ 0/0

○ 4^2
○ (3+4*1j)^2

○ ((2+3)*3)^0.1

●

29

Built-in Functions
●
●

○ sqrt(2)
○ log(2), log10(0.23)
○ cos(1.2), atan(-.8)
○ exp(2+4*1i)
○ round(1.4), floor(3.3), ceil(4.23)
○ angle(1i); abs(1+1i);

30

Exercise: Scalars
helloWorld

●
tau

●
endOfClass

●

● endOfClass knowledgeAtEnd
● knowledgeAtEnd

At the end of 6.057, I will know X% of MATLAB

num2str
31

Transpose
●

○ a = [1 2 3 4+i]
○ transpose(a)
○ a'
○ a.'

●
○

●
○

32

Addition and Subtraction
●
●

33

Addition and Subtraction

● c = row + column

● c = row.’ + column
● c = row + column.’

● s=sum(row);
● p=prod(row);

34

Element-wise functions
●

○

●

●
○
○

35

Element-wise functions

●
●

a=[1 2 3];b=[4;2;1];

a.*b , a./b , a.^b → all errors

a.*b.', a./b.’, a.^(b.’) → all valid

36

Operators
●
●

○

●
●

○

37

Exercise: Vector Operations

●

●

●
●
●

38

Exercise: Vector Operations

●

●
At this time, I know X% of MATLAB

39

Automatic Initialization
• Initialize a vector of ones, zeros, or random numbers

» o=ones(1,10)
➢ Row vector with 10 elements, all 1

» z=zeros(23,1)
➢ Column vector with 23 elements, all 0

» r=rand(1,45)
➢ Row vector with 45 elements (uniform (0,1))

» n=nan(1,69)n=nan(1,69)
➢ Row vector of NaNs (representing uninitialized

variables)

40

Automatic Initialization
• To initialize a linear vector of values use linspace

» a=linspace(0,10,5)
➢ Starts at 0, ends at 10 (inclusive), 5 values

• Can also use colon operator (:)
» b=0:2:10
➢ Starts at 0, increments by 2, and ends at or before 10
➢ Increment can be decimal or negative

» c=1:5
➢ If increment is not specified, default is 1

• To initialize logarithmically spaced values use logspace
➢ Similar to linspace, but see help41

Exercise: Vector Functions
Calculate your learning trajectory
• In helloWorld.m, make a linear time vector tVec that has

10,000 samples between 0 and endOfClass
• Calculate the value of your knowledge

(call it knowledgeVec) at each of these time points
using the same equation as before:

knowledgeVec) at each of these
equation as before:

42

Vector Indexing
• MATLAB indexing starts with 1, not 0

➢ We will not respond to any emails
where this is the problem.

• a(n) returns the nth element

a(1) a(2) a(3) a(4)a(1) a(2) a(3) a(4)

• The index argument can be a vector. In this case,
each element is looked up individually, and returned
as a vector of the same size as the index vector.

» x=[12 13 5 8];
43

Matrix Indexing
• Matrices can be indexed in two ways

➢ using subscripts (row and column)
➢ using linear indices (as if matrix is a vector)

• Matrix indexing: subscripts or linear indices

b(1)

b(2)

b(3)

b(4)

b(1)

b(2)b(2)

b(3)

b(4)b(4)

b(1,1)

b(2,1)

b(1,2)

b(2,2)

b(1,1) b(1,2)

subscripts

• Picking submatrices
44

» A = rand(5) % shorthand for 5x5 matrix

Advanced Indexing 1

• To select rows or columns of a matrix, use the :

d=[12 5];d=[12 5];» d=c(1,:);
» e=c(:,2); e=[5;13];
» c(2,:)=[3 6]; %replaces second row of c

45

Advanced Indexing 2
• MATLAB contains functions to help you find desired values

» vec = [5 3 1 9 7]

• To get the minimum value and its index (similar for max):
» [minVal,minInd] = min(vec);

• To find the indices of specific values or ranges
» ind = find(vec == 9); vec(ind) = 8;
» ind = find(vec > 2 & vec < 6);
➢ find expressions can be very complex, more on this later
➢ When possible, logical indexing is faster than find!

46➢ E.g., vec(vec == 9) = 8;

Exercise: Indexing
When will you know 50% of MATLAB?

First, find the index where knowledgeVec is closest to 0.5.
Mathematically, what you want is the index where the value of

•

~ is at a minimum (use abs and min)
• Next, use that index to look up the corresponding time

in tVec and name this time halfTime
• Finally, display the string:

Convert halfTime to days by using secPerDay. I will know half of
MATLAB after X days

47

Outline

(1) Getting Started
(2) Scripts
(3) Making Variables
(4) Manipulating Variables
(5) Basic Plotting

Did everyone sign in?

48

Plotting
• Example

» x=linspace(0,4*pi,10);
» y=sin(x);

• Plot values against their index
» plot(y);

• Usually we want to plot y versus x
» plot(x,y);

MATLAB makes visualizing data
fun and easy!

49

What does plot do?
• plot generates dots at each (x,y) pair

and then connects the dots with a line
• To make plot of a function look smoother, evaluate at more points

» x=linspace(0,4*pi,1000);
» plot(x,sin(x));

• x and y vectors must be same size or else you’ll get an error
» plot([1 2], [1 2 3])

10 x values:� 1000 x values:

50

10 x values:10 x values:
plot([1 2], [1 2 3])plot([1 2], [1 2 3])

10 x values:10 x values:

5050

1000 x values:1000 x values:1000 x values:

Exercise: Plotting
Plot the learning trajectory
• In helloWorld.m, open a new figure (use figure)
• Plot knowledge trajectory using tVec and knowledgeVec
• When plotting, convert tVec to days by using secPerDay
• Zoom in on the plot to verify that

halfTime was calculated correctly

51

End of Lecture 1

(1) Getting Started
(2) Scripts
(3) Making Variables
(4) Manipulating Variables
(5) BHope that wasn’t too much and

you enjoyed it!!

52

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

53

https://ocw.mit.edu/terms
https://ocw.mit.edu

Lecture 2: Visualization and Programming

6.057
Introduction to programming in MATLAB

Orhan Celiker

IAP 2019

1

Homework 1 Recap

Some things that came up:

• Plotting a straight line
» Y�������
» QMPU	Y
��

➢ Not an error, but probably not what you meant

• Use of semicolon – never required if one command per line.
You can also put multiple commands on one line; in this
case, a semicolon is necessary to separate commands:
» Y�������Z�	Y��
�?���[���Y��Z�

2

Plotting

• Example
» Y�MJOTQBDF	�
��QJ
��
�
» Z�TJO	Y
�

• Plot values against their index
» QMPU	Z
�

• Usually we want to plot y versus x
» QMPU	Y
Z
�

MATLAB makes visualizing data
fun and easy!

3

What does plot do?

• plot generates dots at each (x,y) pair
and then connects the dots with a line

• To make plot of a function look smoother, evaluate at more points
» Y�MJOTQBDF	�
��QJ
����
�
» QMPU	Y
TJO	Y

�

• x and y vectors must be same size or else you’ll get an error
» QMPU	<���>
�<�����>

➢ error!!

10 x values: 1000 x values:10 x values:10 x values:10 x values: 1000 x values:1000 x values:1000 x values:

4

Exercise: Plotting

Plot the learning trajectory
• In helloWorld.m, open a new figure (use GJHVSF)
• Plot knowledge trajectory using U7FD and LOPXMFEHF7FD
• When plotting, convert U7FD�to days by using TFD1FS%BZ
• Zoom in on the plot to verify that

IBMG5JNF was calculated correctly

5

Outline for Lec 2

(1) Functions
(2) Flow Control
(3) Line Plots
(4) Image/Surface Plots
(5) Efficient Codes
(6) Debugging

6

User-defined Functions
• Functions look exactly like scripts, but for ONE difference

➢ Functions must have a function declaration

Help file

Function declaration

InputsInputsOutputs

7

."5-"#�WFSTJPO������$PVSUFTZ�PG�5IF�.BUI8PSLT
�*OD��6TFE�XJUI�QFSNJTTJPO��."5-"#�BOE�4JNVMJOL�BSF�SFHJTUFSFE�USBEFNBSLT�PG�5IF�.BUI8PSLT
�*OD���4FF�
XXX�NBUIXPSLT�DPN�USBEFNBSLT�GPS�B�MJTU�PG�BEEJUJPOBM�USBEFNBSLT���0UIFS�QSPEVDU�PS�CSBOE�OBNFT�NBZ�CF�USBEFNBSLT�PS�SFHJTUFSFE�USBEFNBSLT�PG�UIFJS�SFTQFDUJWF�IPMEFST�

www.mathworks.com/trademarks

User-defined Functions

• Some comments about the function declaration

function [x, y, z] = funName(in1, in2)

Must have the reserved
word: function

Function name should
match m-file name

If more than one output,
must be in brackets

Inputs

• No need for return: MATLAB 'returns' the variables whose
names match those in the function declaration (though, you
can use SFUVSO to break and go back to invoking function)

• Variable scope: Any variable created within the function but
not returned disappears after the function stops running
(They’re called “local variables”)

8

Functions: overloading

• We're familiar with
» [FSPT
» TJ[F
» MFOHUI
» TVN

• Look at the help file for size by typing
» IFMQ�TJ[F

• The help file describes several ways to invoke the function
➢ D = SIZE(X)
➢ [M,N] = SIZE(X)
➢ [M1,M2,M3,...,MN] = SIZE(X)
➢ M = SIZE(X,DIM)

9

Functions: overloading

• MATLAB functions are generally overloaded
➢ Can take a variable number of inputs
➢ Can return a variable number of outputs

• What would the following commands return:
» B�[FSPT	�
�
�
���O�EJNFOTJPOBM�NBUSJDFT�BSF�0,
» %�TJ[F	B

» <N
O>�TJ[F	B

» <Y
Z
[>�TJ[F	B

» N��TJ[F	B
�

• You can overload your own functions by having variable
number of input and output arguments (see WBSBSHJO,
OBSHJO, WBSBSHPVU, OBSHPVU)

10

Functions: Exercise

• Write a function with the following declaration:
GVODUJPO�QMPU4JO	G�

• In the function, plot a sine wave with frequency f1, on theIn the function, plot a sine wave with frequency f1, on theIn the function, plot a sine wave with frequency f1, on the
interval [0,2π]:

• To get good sampling, use 16 points per period.

11

Outline

(1) Functions
(2) Flow Control
(3) Line Plots
(4) Image/Surface Plots
(5) Efficient Codes
(6) Debugging

12

Relational Operators

• MATLAB uses mostly standard relational operators
➢ equal ==
➢ not equal ~=
➢ greater than >
➢ less than <
➢ greater or equal >=
➢ less or equal <=

• Logical operators elementwise short-circuit (scalars)
➢ And & &&
➢ Or | ||
➢ Not ~
➢ Xor xor
➢ All true all
➢ Any true any

• Boolean values: zero is false, nonzero is true
• See help . for a detailed list of operators

13

if/else/elseif

• Basic flow-control, common to all languages
• MATLAB syntax is somewhat unique

IF

if cond

 commands

end

ELSE

if cond

 commands1

else

 commands2

end

ELSEIF

if cond1

 commands1

elseif cond2

commands2

else

commands3

end

Conditional statement:
evaluates to true or false

 commands

• No need for parentheses: command blocks are between
reserved words

• Lots of FMTFJG’s? consider using TXJUDI14

for

• for loops: use for a known number of iterations
• MATLAB syntax:

for n=1:100
commands

end

Loop variable

Command block

for n=1:100for n=1:100for
commands

end

• The loop variable
➢ Is defined as a vector
➢ Is a scalar within the command block
➢ Does not have to have consecutive values (but it's usually

cleaner if they're consecutive)
• The command block

➢ Anything between the for line and the end

15

while

• The while is like a more general for loop:
➢ No need to know number of iterations

WHILE

while cond
 commands
end

• The command block will execute while the conditional
expression is true

• Beware of infinite loops! CTRL+C?!
• You can use CSFBL to exit a loop

16

Exercise: Conditionals

• Modify your QMPU4JO	G�
 function to take two inputs:
QMPU4JO	G�
G�

• If the number of input arguments is 1, execute the plot command
you wrote before. Otherwise, display the line h5XP�JOQVUT�XFSF
HJWFOh

• Hint: the number of input arguments is stored in the built-in
variable OBSHJO

17

Outline

(1) Functions
(2) Flow Control
(3) Line Plots
(4) Image/Surface Plots
(5) Efficient Codes
(6) Debugging

18

Plot Options

• Can change the line color, marker style, and line style by
adding a string argument
» QMPU	Y
Z
�L���
�

color marker line-style

• Can plot without connecting the dots by omitting line style
argument
» QMPU	Y
Z
���

• Look at help plot for a full list of colors, markers, and line
styles

19

Playing with the Plot

to select lines
and delete or
change
properties

to zoom in/out
to slide the plot
around

to see all plot
tools at once

20
."5-"#�WFSTJPO������$PVSUFTZ�PG�5IF�.BUI8PSLT
�*OD��6TFE�XJUI�QFSNJTTJPO��."5-"#�BOE�4JNVMJOL�BSF�SFHJTUFSFE�USBEFNBSLT�PG�5IF�.BUI8PSLT
�*OD���4FF�
XXX�NBUIXPSLT�DPN�USBEFNBSLT�GPS�B�MJTU�PG�BEEJUJPOBM�USBEFNBSLT���0UIFS�QSPEVDU�PS�CSBOE�OBNFT�NBZ�CF�USBEFNBSLT�PS�SFHJTUFSFE�USBEFNBSLT�PG�UIFJS�SFTQFDUJWF�IPMEFST�

www.mathworks.com/trademarks

Line and Marker Options

• Everything on a line can be customized
» QMPU	Y
Z
hT��h
h-JOF8JEUIh
�
���

h$PMPSh
�<�����>
����
h.BSLFS&EHF$PMPSh
hLh
���
h.BSLFS'BDF$PMPSh
hHh
���
h.BSLFS4J[Fh
��

• See doc line_props for a full list of
properties that can be specified

 for a full list of for a full list of

You can set colors by using
a vector of [R G B] values or
a predefined color character
like 'g', 'k', etc.

h$PMPSh
�<�����>
����
h.BSLFS&EHF$PMPSh
hLh
���h.BSLFS&EHF$PMPSh
hLh
���
h.BSLFS'BDF$PMPSh
hHh
���
h.BSLFS4J[Fh
��

You can set colors by using

21

Cartesian Plots

• We have already seen the plot function
» Y��QJ�QJ�����QJ�
» Z�DPT	��Y
��TJO	���Y
��FYQ	�BCT	Y

�
» QMPU	Y
Z
hL�h
�

• The same syntax applies for semilog and loglog plots
» TFNJMPHY	Y
Z
hLh
�
» TFNJMPHZ	Z
hS��h
�
» MPHMPH	Y
Z
�

• For example:
» Y�������
» TFNJMPHZ	Y
FYQ	Y

hL��h
�

22

TFNJMPHZ	Y
FYQ	Y

hL��h
�TFNJMPHZ	Y
FYQ	Y

hL��h
�

3D Line Plots

• We can plot in 3 dimensions just as easily as in 2D
» UJNF�����������QJ�
» Y�TJO	UJNF
�
» Z�DPT	UJNF
�
» [�UJNF�
» QMPU�	Y
Z
[
hLh
h-JOF8JEUIh
�
�
» [MBCFM	h5JNFh
�

23

3D Line Plots

• We can plot in 3 dimensions just as easily as in 2D
» UJNF�����������QJ�
» Y�TJO	UJNF
�
» Z�DPT	UJNF
�
» [�UJNF�
» QMPU�	Y
Z
[
hLh
h-JOF8JEUIh
�
�
» [MBCFM	h5JNFh
�

• Use tools on figure to rotate it
• Can set limits on all 3 axes

» YMJN
�ZMJN
�[MJN

24

Axis Modes

• Built-in axis modes (see EPD�BYJT�for more modes)

» BYJT�TRVBSF
➢ makes the current axis look like a square box

» BYJT�UJHIU
➢ fits axes to data

» BYJT�FRVBM
➢ makes x and y scales the same

» BYJT�YZ
➢ puts the origin in the lower left corner (default for plots)

» BYJT�JK
➢ puts the origin in the upper left corner (default for

matrices/images)

25

Multiple Plots in one Figure

• To have multiple axes in one figure
» TVCQMPU	�
�
�

➢ makes a figure with 2 rows and 3 columns of axes, and activates
the first axis for plotting

➢ each axis can have labels, a legend, and a title
» TVCQMPU	�
�
���

➢ activates a range of axes and fuses them into one

• To close existing figures
» DMPTF	<���>

➢ closes figures 1 and 3
» DMPTF�BMM

➢ closes all figures (useful in scripts)

26

Copy/Paste Figures
• Figures can be pasted into other apps (word, ppt, etc)
• Edit→ copy options→ figure copy template

➢ Change font sizes, line properties; presets for word and ppt
• Edit→ copy figure to copy figure
• Paste into document of interest

."5-"#�WFSTJPO������$PVSUFTZ�PG�5IF�.BUI8PSLT
�*OD��6TFE�XJUI�QFSNJTTJPO��."5-"#�BOE�4JNVMJOL�BSF�SFHJTUFSFE�USBEFNBSLT�PG�5IF�.BUI8PSLT
�*OD���4FF�
XXX�NBUIXPSLT�DPN�USBEFNBSLT�GPS�B�MJTU�PG�BEEJUJPOBM�USBEFNBSLT���0UIFS�QSPEVDU�PS�CSBOE�OBNFT�NBZ�CF�USBEFNBSLT�PS�SFHJTUFSFE�USBEFNBSLT�PG�UIFJS�SFTQFDUJWF�IPMEFST�

27

www.mathworks.com/trademarks

Saving Figures
• Figures can be saved in many formats. The common ones

are:

.fig preserves all
information

.bmp uncompressed
image

.eps high-quality
scaleable format

.pdf compressed
image

28

."5-"#�WFSTJPO������$PVSUFTZ�PG�5IF�.BUI8PSLT
�*OD��6TFE�XJUI�QFSNJTTJPO��."5-"#�BOE�4JNVMJOL�BSF�SFHJTUFSFE�USBEFNBSLT�PG�5IF�.BUI8PSLT
�*OD���4FF�
XXX�NBUIXPSLT�DPN�USBEFNBSLT�GPS�B�MJTU�PG�BEEJUJPOBM�USBEFNBSLT���0UIFS�QSPEVDU�PS�CSBOE�OBNFT�NBZ�CF�USBEFNBSLT�PS�SFHJTUFSFE�USBEFNBSLT�PG�UIFJS�SFTQFDUJWF�IPMEFST�

www.mathworks.com/trademarks

Advanced Plotting: Exercise

• Modify the plot command in your plotSin function to use
squares as markers and a dashed red line of thickness 2
as the line. Set the marker face color to be black
(properties are -JOF8JEUI, .BSLFS'BDF$PMPS)

• If there are 2 inputs, open a new figure with 2 axes, one on
top of the other (not side by side), and plot both
frequencies (TVCQMPU)

QMPU4JO	�
 QMPU4JO	�
�

29

Outline

(1) Functions
(2) Flow Control
(3) Line Plots
(4) Image/Surface Plots
(5) Efficient Codes
(6) Debugging

30

Visualizing matrices

Any matrix can be visualized as an image
» NBU�SFTIBQF	�������
���
���
�
» JNBHFTD	NBU
�
» DPMPSCBS

imagesc automatically scales the values to span the entire automatically scales the values to span the entire

•

•
colormap

• Can set limits for the color axis (analogous to YMJN, ZMJN)
» DBYJT	<���������>

31

Colormaps
• You can change the colormap:

» JNBHFTD	NBU

➢ default map is parula

» DPMPSNBQ	HSBZ

» DPMPSNBQ	DPPM

» DPMPSNBQ	IPU	���

• See IFMQ�IPU for a list

• Can define custom color-map
» NBQ�[FSPT	���
�
�
» NBQ	�
�
�	�����
�����

gray

jet

coolhot(256)

parula

NBQ	�
�
�	�����
�����NBQ	�
�
�	�����
�����

gray

jet

coolhot(256)

You can change the colormap:You can change the colormap:

parula

» DPMPSNBQ	NBQ
�

32

Surface Plots

• It is more common to visualize surfaces in 3D

• Example:

• surf puts vertices at specified points in space x,y,z, and
connects all the vertices to make a surface

• The vertices can be denoted by matrices X,Y,Z

• How can we make these matrices
➢ built-in function: meshgrid

33

surf

• Make the x and y vectors
» Y��QJ�����QJ�
» Z��QJ�����QJ�

• Use meshgrid to make matrices
» <9
:>�NFTIHSJE	Y
Z
�

• To get function values,
evaluate the matrices
» ;��TJO	9
��DPT	:
�

• Plot the surface
» TVSG	9
:
;

» TVSG	Y
Z
;
�

*Try typing surf(membrane)

Use meshgrid to make matrices
<9
:>�NFTIHSJE	Y
Z
�

surf(membrane)

Use meshgrid to make matrices
<9
:>�NFTIHSJE	Y
Z
�

surf(membrane)
34

surf Options

• See help surf for more options
• There are three types of surface shading

» TIBEJOH�GBDFUFE
» TIBEJOH�GMBU
» TIBEJOH�JOUFSQ

• You can also change the colormap
» DPMPSNBQ	HSBZ

faceted

flatinterp

35

There are three types of surface shadingThere are three types of surface shading

faceted

flatinterp

35

interpinterpinterpinterp flatflat

contour

• You can make surfaces two-dimensional by using contour
» DPOUPVS	9
:
;
h-JOF8JEUIh
�

You can make surfaces two-dimensional by using contour
DPOUPVS	9
:
;
h-JOF8JEUIh
�

➢ takes same arguments as surf
➢ color indicates height
➢ can modify linestyle properties
➢ can set colormap

» IPME�PO
» NFTI	9
:
;

36

You can make surfaces two-dimensional by using contour
DPOUPVS	9
:
;
h-JOF8JEUIh
�

takes same arguments as surf

can modify linestyle properties

Exercise: 3-D Plots

If two inputs are given, evaluate the following function:If two inputs are given, evaluate the following function:If two inputs are given, evaluate the following function:
• Modify QMPU4JO to do the following:
•

• y should be just like x, but using f2. (use NFTIHSJE to get
the X and Y matrices)

• In the top axis of your subplot, display an image of the Z
matrix. Display the colorbar and use a IPU colormap. Set
the axis to xy (JNBHFTD, DPMPSNBQ, DPMPSCBS, BYJT)

• In the bottom axis of the subplot, plot the 3-D surface of Z
(TVSG)

37

Exercise: 3-D Plots

QMPU4JO	�
�
 generates this figure

38

QMPU4JO	�
�
 generates this figure

38

QMPU4JO	�
�
 generates this figureQMPU4JO	�
�
 generates this figure

Specialized Plotting Functions

• MATLAB has a lot of specialized plotting functions
• polar-to make polar plots

» QPMBS	���������QJ
DPT		���������QJ
��

• bar-to make bar graphs

» CBS	����
SBOE	�
��

�
• quiver-to add velocity vectors to a plot

» <9
:>�NFTIHSJE	����
����
�
» RVJWFS	9
:
SBOE	��

SBOE	��

�

• stairs-plot piecewise constant functions
» TUBJST	����
SBOE	�
��

�

• fill-draws and fills a polygon with specified vertices
» GJMM	<�������>
<�����>
hSh
�

• see help on these functions for syntax
• doc specgraph – for a complete list

39

Outline

(1) Functions
(2) Flow Control
(3) Line Plots
(4) Image/Surface Plots
(5) Efficient codes
(6) Debugging

40

find

• find is a very important function
➢ Returns indices of nonzero values
➢ Can simplify code and help avoid loops

• Basic syntax: index=find(cond)
» Y�SBOE	�
���
�
» JOET���GJOE	Y�������Y����
�

JOET contains the indices at which x has values between 0.4
and 0.6. This is what happens:

x>0.4 returns a vector with 1 where true and 0 where false
x<0.6 returns a similar vector
& combines the two vectors using logical and operator
find returns the indices of the 1's

41

Example: Avoiding Loops

• Given x= sin(linspace(0,10*pi,100)), how many of the
entries are positive?

Using a loop and if/else

count=0;

for n=1:length(x)

if x(n)>0

 count=count+1;

end

end

Being more clever

count=length(find(x>0));

Is there a better way?!

length(x)

100

10,000

100,000

1,000,000

Loop time

0.01

0.1

0.22

1.5

Find time

0

0

0

0.04

• Avoid loops!
• Built-in functions will make it faster to write and execute

42

Vectorization

• Avoid loops
➢ This is referred to as vectorization

• Vectorized code is more efficient for MATLAB
• Use indexing and matrix operations to avoid loops
• For instance, to add every two consecutive terms:

43

Vectorization

• Avoid loops
➢ This is referred to as vectorization

• Vectorized code is more efficient for MATLAB
• Use indexing and matrix operations to avoid loops
• For instance, to add every two consecutive terms:

» B�SBOE	�
���
�
» C�[FSPT	�
���
�
» GPS�O������
» JG�O���
» C	O
�B	O
�
» FMTF
» C	O
�B	O��
�B	O
�
» FOE
» FOE

44➢ Slow and complicated

Vectorization

• Avoid loops
➢ This is referred to as vectorization

• Vectorized code is more efficient for MATLAB
• Use indexing and matrix operations to avoid loops
• For instance, to add every two consecutive terms:

» B�SBOE	�
���
� » B�SBOE	�
���
�
» C�[FSPT	�
���
� » C�<��B	��FOE��
>�B�
» GPS�O������ ➢ Efficient and clean. Can
» JG�O��� also do this using DPOW

» C	O
�B	O
�
» FMTF
» C	O
�B	O��
�B	O
�
» FOE
» FOE

45➢ Slow and complicated

Preallocation

• Avoid variables growing inside a loop
• Re-allocation of memory is time consuming
• Preallocate the required memory by initializing the array to

a default value
• For example:

» GPS�O������
» SFT�����7FSZ�DPNQMFY�DBMDVMBUJPO��
» B	O
���SFT�
» FOE
➢ Variable B needs to be resized at every loop iteration

46

Preallocation

• Avoid variables growing inside a loop
• Re-allocation of memory is time consuming
• Preallocate the required memory by initializing the array to

a default value
• For example:

» B���[FSPT	�
����
�
» GPS�O������
» SFT�����7FSZ�DPNQMFY�DBMDVMBUJPO��
» B	O
���SFT�
» FOE
➢ Variable B is only assigned new values. No new memory is

allocated

47

Outline

(1) Functions
(2) Flow Control
(3) Line Plots
(4) Image/Surface Plots
(5) Efficient codes
(6) Debugging

48

Display

• When debugging functions, use disp to print messages
» EJTQ	hTUBSUJOH�MPPQh

» EJTQ	hMPPQ�JT�PWFSh

➢ EJTQ prints the given string to the command window

• It's also helpful to show variable values
» EJTQ	<hMPPQ�JUFSBUJPO�h�OVN�TUS	O
>
�
➢ Sometimes it's easier to just remove some semicolons

49

Debugging
• To use the debugger, set breakpoints

➢ Click on – next to line numbers in m-files
➢ Each red dot that appears is a breakpoint
➢ Run the program
➢ The program pauses when it reaches a breakpoint
➢ Use the command window to probe variables
➢ Use the debugging buttons to control debugger

Two breakpoints

Where the program is now

Clear all
breakpoints

Step to next

Stop execution; exitToggle
breakpoint

50

."5-"#�WFSTJPO������$PVSUFTZ�PG�5IF�.BUI8PSLT
�*OD��6TFE�XJUI�QFSNJTTJPO��."5-"#�BOE�4JNVMJOL�BSF�SFHJTUFSFE�USBEFNBSLT�PG�5IF�.BUI8PSLT
�*OD���4FF�
XXX�NBUIXPSLT�DPN�USBEFNBSLT�GPS�B�MJTU�PG�BEEJUJPOBM�USBEFNBSLT���0UIFS�QSPEVDU�PS�CSBOE�OBNFT�NBZ�CF�USBEFNBSLT�PS�SFHJTUFSFE�USBEFNBSLT�PG�UIFJS�SFTQFDUJWF�IPMEFST�

www.mathworks.com/trademarks

Performance Measures

• It can be useful to know how long your code takes to run
➢ To predict how long a loop will take
➢ To pinpoint inefficient code

• You can time operations using tic/toc:
» UJD
» .ZTUFSZ��
» B�UPD�
» .ZTUFSZ��
» C�UPD�
➢ tic resets the timer
➢ Each toc returns the current value in seconds
➢ Can have multiple tocs per tic

51

Performance Measures

• Example: Sparse matrices
» "�[FSPT	�����
��"	�
�
�����"	��
�
�QJ�
» #�TQBSTF	"
�
» JOW	"
�����XIBU�IBQQFOT
» JOW	#
�����XIBU�BCPVU�OPX

• If system is sparse, can lead to large memory/time savings
» "�[FSPT	����
��"	�
�
�����"	��
�
�QJ�
» #�TQBSTF	"
�
» $�SBOE	����
�
�
» UJD��"=$��UPD�����TMPX�
» UJD��#=$��UPD�����NVDI�GBTUFS�

52

Performance Measures

• For more complicated programs, use the profiler
» QSPGJMF�PO
➢ Turns on the profiler. Follow this with function calls

» QSPGJMF�WJFXFS
➢ Displays gui with stats on how long each subfunction took

53

."5-"#�WFSTJPO������$PVSUFTZ�PG�5IF�.BUI8PSLT
�*OD��6TFE�XJUI�QFSNJTTJPO��."5-"#�BOE�4JNVMJOL�BSF�SFHJTUFSFE�USBEFNBSLT�PG�5IF�.BUI8PSLT
�*OD���4FF�
XXX�NBUIXPSLT�DPN�USBEFNBSLT�GPS�B�MJTU�PG�BEEJUJPOBM�USBEFNBSLT���0UIFS�QSPEVDU�PS�CSBOE�OBNFT�NBZ�CF�USBEFNBSLT�PS�SFHJTUFSFE�USBEFNBSLT�PG�UIFJS�SFTQFDUJWF�IPMEFST�

www.mathworks.com/trademarks

End of Lecture 2

(1) Functions
(2) Flow Control
(3) Line Plots
(4) Image/Surface Plots
(5) Efficient codes
(6) Debugging

Vectorization makes coding
fun!

54

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

Lecture 3 : Solving Equations, Curve Fitting,
and Numerical Techniques

6.057
Introduction to MATLAB

Orhan Celiker

IAP 2019

1

Outline

(1) Linear Algebra
(2) Polynomials
(3) Optimization
(4) Differentiation/Integration
(5) Differential Equations

2

Systems of Linear Equations

• Given a system of linear equations
➢ x+2y-3z=5
➢ -3x-y+z=-8
➢ x-y+z=0

MATLAB makes linear
algebra fun!

• Construct matrices so the system is described by Ax=b
» A=[1 2 -3;-3 -1 1;1 -1 1];
» b=[5;-8;0];

• And solve with a single line of code!
» x=A\b;

➢ x is a 3x1 vector containing the values of x, y, and z

• The \ will work with square or rectangular systems.
• Gives least squares solution for rectangular systems. Solution

depends on whether the system is over or underdetermined.

3

Worked Example: Linear Algebra

• Solve the following systems of equations:

➢ System 1: » A=[1 4;-3 1];
» b=[34;2];
» rank(A)
» x=inv(A)*b;
» x=A\b;

➢ System 2: » A=[2 -2;-1 1;3 4];
» b=[4;3;2];
» rank(A)
➢ rectangular matrix

» x=A\b;
➢ gives least squares solution

» error=abs(A*x1-b)
4

More Linear Algebra

• Given a matrix
» mat=[1 2 -3;-3 -1 1;1 -1 1];

• Calculate the rank of a matrix
» r=rank(mat);

➢ the number of linearly independent rows or columns
• Calculate the determinant

» d=det(mat);
➢ mat must be square; matrix invertible if det nonzero

• Get the matrix inverse
» E=inv(mat);

➢ if an equation is of the form A*x=b with A a square matrix,
x=A\b is (mostly) the same as x=inv(A)*b

• Get the condition number
» c=cond(mat); (or its reciprocal: c = rcond(mat);)

➢ if condition number is large, when solving A*x=b,
small errors in b can lead to large errors in x (optimal c==1)

5

Matrix Decompositions

• MATLAB has many built-in matrix decomposition methods

• The most common ones are
» [V,D]=eig(X)
➢ Eigenvalue decomposition

» [U,S,V]=svd(X)
➢ Singular value decomposition

» [Q,R]=qr(X)
➢ QR decomposition

» [L,U]=lu(X)
➢ LU decomposition

» R=chol(X)
➢ Cholesky decomposition (R must be positive definite)

6

Exercise: Fitting Polynomials

• Find the best second-order polynomial that fits the points:
(-1,0), (0,-1), (2,3).

7

Outline

(1) Linear Algebra
(2) Polynomials
(3) Optimization
(4) Differentiation/Integration
(5) Differential Equations

8

Polynomials

• Many functions can be well described by a high-order
polynomial

• MATLAB represents a polynomials by a vector of coefficients
➢ if vector P describes a polynomial

 ax3+bx2+cx+d

P(1) P(2) P(3) P(4)

• P=[1 0 -2] represents the polynomial x2-2

• P=[2 0 0 0] represents the polynomial 2x3

9

Polynomial Operations

• P is a vector of length N+1 describing an N-th order polynomial
• To get the roots of a polynomial

» r=roots(P)
➢ r is a vector of length N

• Can also get the polynomial from the roots
» P=poly(r)

➢ r is a vector length N

• To evaluate a polynomial at a point
» y0=polyval(P,x0)

➢ x0 is a single value; y0 is a single value

• To evaluate a polynomial at many points
» y=polyval(P,x)

➢ x is a vector; y is a vector of the same size
10

Polynomial Fitting

• MATLAB makes it very easy to fit polynomials to data

• Given data vectors X=[-1 0 2] and Y=[0 -1 3]
» p2=polyfit(X,Y,2);
➢ finds the best (least-squares sense) second-order

polynomial that fits the points (-1,0),(0,-1), and (2,3)
➢ see help polyfit for more information

» plot(X,Y,’o’, ‘MarkerSize’, 10);
» hold on;
» x = -3:.01:3;
» plot(x,polyval(p2,x), ‘r--’);

11

Exercise: Polynomial Fitting

• Evaluate for x=-4:0.1:4.

• Add random noise to these samples. Use randn. Plot the
noisy signal with . markers

• Fit a 2nd degree polynomial to the noisy data

• Plot the fitted polynomial on the same plot, using the same
x values and a red line

12

Outline

(1) Linear Algebra
(2) Polynomials
(3) Optimization
(4) Differentiation/Integration
(5) Differential Equations

13

Nonlinear Root Finding

• Many real-world problems require us to solve f(x)=0
• Can use fzero to calculate roots for any arbitrary function

• fzero needs a function passed to it.
• We will see this more and more as we delve into solving

equations.

• Make a separate function file
» x=fzero('myfun',1)
» x=fzero(@myfun,1)
➢ 1 specifies a

point close to where
you think the root is

14
."5-"#�WFSTJPO������$PVSUFTZ�PG�5IF�.BUI8PSLT
�*OD��6TFE�XJUI�QFSNJTTJPO��."5-"#�BOE�4JNVMJOL�BSF�SFHJTUFSFE�USBEFNBSLT�PG�5IF�.BUI8PSLT
�*OD���4FF�
XXX�NBUIXPSLT�DPN�USBEFNBSLT�GPS�B�MJTU�PG�BEEJUJPOBM�USBEFNBSLT���0UIFS�QSPEVDU�PS�CSBOE�OBNFT�NBZ�CF�USBEFNBSLT�PS�SFHJTUFSFE�USBEFNBSLT�PG�UIFJS�SFTQFDUJWF�IPMEFST�

www.mathworks.com/trademarks

Minimizing a Function

• fminbnd: minimizing a function over a bounded interval
» x=fminbnd('myfun',-1,2);
➢ myfun takes a scalar input and returns a scalar output
➢ myfun(x) will be the minimum of myfun for -1≤x ≤ 2

• fminsearch: unconstrained interval
» x=fminsearch('myfun',.5)
➢ finds the local minimum of myfun starting at x=0.5

• Maximize g(x) by minimizing f(x)=-g(x)

• Solutions may be local!

15

Anonymous Functions

Instead, you can make an anonymous function
» x=fzero(@(x)(cos(exp(x))+x.^2-1), 1);

input function to evaluate

x=fzero(@(x)(cos(exp(x))+x.^2-1), 1);

• You do not have to make a separate function file
» x=fzero(@myfun,1)
➢ What if myfun is really simple?

•

» x=fminbnd(@(x) (cos(exp(x))+x.^2-1),-1,2);

• Can also store the function handle
» func=@(x) (cos(exp(x))+x.^2-1);
» func(1:10);

16

Optimization Toolbox

• If you are familiar with optimization methods, use the
optimization toolbox

• Useful for larger, more structured optimization problems

• Sample functions (see help for more info)
» linprog
➢ linear programming using interior point methods

» quadprog
➢ quadratic programming solver

» fmincon
➢ constrained nonlinear optimization

17

Exercise: Min-Finding

• Find the minimum of the function
over the range –π to π. Use fminbnd.

• Plot the function on this range to check that this is the
minimum.

18

Digression: Numerical Issues

• Many techniques in this lecture use floating point numbers
• This is an approximation!

• Examples:
» sin(pi) = ?
» sin(2 * pi) = ?
» sin(10e16 * pi) = ?
➢ Both sin and pi are approximations!

» A = (10e13)*ones(10) + rand(10)
➢ A is nearly singular, poorly conditioned (see cond(A))

» inv(A)*A = ?

19

A Word of Caution

• MATLAB knows no fear!

• Give it a function, it optimizes / differentiates / integrates
➢ That’s great! It’s so powerful!

• Numerical techniques are powerful but not magic

• Beware of overtrusting the solution!
➢ You will get an answer, but it may not be what you want

• Analytical forms may give more intuition
➢ Symbolic Math Toolbox

20

Outline

(1) Linear Algebra
(2) Polynomials
(3) Optimization
(4) Differentiation/Integration
(5) Differential Equations

21

Numerical Differentiation

• MATLAB can 'differentiate' numerically
» x=0:0.01:2*pi;
» y=sin(x);
» dydx=diff(y)./diff(x);

➢ diff computes the first difference

• Can also operate on matrices
» mat=[1 3 5;4 8 6];
» dm=diff(mat,1,2)

➢ first difference of mat along the 2nd dimension, dm=[2 2;4 -2]

numerically

mat along themat along the 22nd dimension,dimension, dm=[2dm=[2 2;42;4 -2]-2]

x=0:0.01:2*pi;

dydx=diff(y)./diff(x);
first differencefirst differencefirst differencefirst differencefirst differencefirst difference

➢ The opposite of diff is the cumulative sum cumsum

• 2D gradient
» [dx,dy]=gradient(mat);

• Higher derivatives / complicated problems: Fit spline (see help)

22

Numerical Integration

• MATLAB contains common integration methods

• Adaptive Simpson's quadrature (input is a function)
» q=quad('myFun',0,10)
➢ q is the integral of the function myFun from 0 to 10

» q2=quad(@(x) sin(x).*x,0,pi)
➢ q2 is the integral of sin(x).*x from 0 to pi

• Trapezoidal rule (input is a vector)
» x=0:0.01:pi;
» z=trapz(x,sin(x))
➢ z is the integral of sin(x) from 0 to pi

» z2=trapz(x,sqrt(exp(x))./x)
➢ z2 is the integral of from 0 to pi

23

Outline

(1) Linear Algebra
(2) Polynomials
(3) Optimization
(4) Differentiation/Integration
(5) Differential Equations

24

ODE Solvers: Method

• Given a differential equation, the solution can be found by
integration:

➢ Evaluate the derivative at a point and approximate by straight line
➢ Errors accumulate!
➢ Variable timestep can decrease the number of iterations

25

ODE Solvers: MATLAB

• MATLAB contains implementations of common ODE solvers

• Using the correct ODE solver can save you lots of time and
give more accurate results
» ode23
➢ Low-order solver. Use when integrating over small intervals

or when accuracy is less important than speed
» ode45
➢ High order (Runge-Kutta) solver. High accuracy and

reasonable speed. Most commonly used.
» ode15s
➢ Stiff ODE solver (Gear's algorithm), use when the diff eq's

have time constants that vary by orders of magnitude

26

ODE Solvers: Standard Syntax

To use standard options and variable time step
» [t,y]=ode45('myODE',[0,10],[1;0])

ODE integrator:
23, 45, 15s

ODE function Time range

Initial conditions

•

• Inputs:
➢ ODE function name (or anonymous function). This function

should take inputs (t,y), and returns dy/dt
➢ Time interval: 2-element vector with initial and final time
➢ Initial conditions: column vector with an initial condition for

each ODE. This is the first input to the ODE function
➢ Make sure all inputs are in the same (variable) order

• Outputs:
➢ t contains the time points
➢ y contains the corresponding values of the variables

27

ODE Function
• The ODE function must return the value of the derivative at

a given time and function value

• Example: chemical reaction 10
➢ Two equations

➢ ODE file:
– y has [A;B]
– dydt has

[dA/dt;dB/dt]

A B
50

28

."5-"#�WFSTJPO������$PVSUFTZ�PG�5IF�.BUI8PSLT
�*OD��6TFE�XJUI�QFSNJTTJPO��."5-"#�BOE�4JNVMJOL�BSF�SFHJTUFSFE�USBEFNBSLT�PG�5IF�.BUI8PSLT
�*OD���4FF�
XXX�NBUIXPSLT�DPN�USBEFNBSLT�GPS�B�MJTU�PG�BEEJUJPOBM�USBEFNBSLT���0UIFS�QSPEVDU�PS�CSBOE�OBNFT�NBZ�CF�USBEFNBSLT�PS�SFHJTUFSFE�USBEFNBSLT�PG�UIFJS�SFTQFDUJWF�IPMEFST�

www.mathworks.com/trademarks

ODE Function: viewing results

• To solve and plot the ODEs on the previous slide:
» [t,y]=ode45('chem',[0 0.5],[0 1]);
➢ assumes that only chemical B exists initially

» plot(t,y(:,1),'k','LineWidth',1.5);
» hold on;
» plot(t,y(:,2),'r','LineWidth',1.5);
» legend('A','B');
» xlabel('Time (s)');
» ylabel('Amount of chemical (g)');
» title('Chem reaction');

29

ODE Function: viewing results

• The code on the previous slide produces this figure

30

Higher Order Equations
• Must make into a system of first-order equations to use

ODE solvers
• Nonlinear is OK!
• Pendulum example:

."5-"#�WFSTJPO������$PVSUFTZ�PG�5IF�.BUI8PSLT
�*OD��6TFE�XJUI�QFSNJTTJPO��."5-"#�BOE�4JNVMJOL�BSF�SFHJTUFSFE�USBEFNBSLT�PG�5IF�.BUI8PSLT
�*OD���4FF�
XXX�NBUIXPSLT�DPN�USBEFNBSLT�GPS�B�MJTU�PG�BEEJUJPOBM�USBEFNBSLT���0UIFS�QSPEVDU�PS�CSBOE�OBNFT�NBZ�CF�USBEFNBSLT�PS�SFHJTUFSFE�USBEFNBSLT�PG�UIFJS�SFTQFDUJWF�IPMEFST�

31

www.mathworks.com/trademarks

Plotting the Output

• We can solve for the position and velocity of the pendulum:
» [t,x]=ode45('pendulum',[0 10],[0.9*pi 0]);
➢ assume pendulum is almost horizontal

» plot(t,x(:,1));
» hold on;
» plot(t,x(:,2),'r');
» legend('Position','Velocity');

Position in terms of
angle (rad)

Velocity (m/s)

32

Plotting the Output

• Or we can plot in the phase plane:
» plot(x(:,1),x(:,2));
» xlabel('Position');
» yLabel('Velocity');

• The phase plane is just a plot of one variable versus the
other:

Velocity is greatest
when theta=0

Velocity=0 when
theta is the greatest

VelocityVelocityVelocity is greatest
whenwhenwhen theta=0

Velocity=0 when
theta is the greatestgreatestgreatest

33

ODE Solvers: Custom Options

• MATLAB's ODE solvers use a variable timestep
• Sometimes a fixed timestep is desirable

» [t,y]=ode45('chem',[0:0.001:0.5],[0 1]);
➢ Specify timestep by giving a vector of (increasing) times
➢ The function value will be returned at the specified points

• You can customize the error tolerances using odeset
» options=odeset('RelTol',1e-6,'AbsTol',1e-10);
» [t,y]=ode45('chem',[0 0.5],[0 1],options);
➢ This guarantees that the error at each step is less than

RelTol times the value at that step, and less than AbsTol
➢ Decreasing error tolerance can considerably slow the solver
➢ See doc odeset for a list of options you can customize

34

Exercise: ODE

• Use ode45 to solve for on the range t=[0 10], with
initial condition and

• Plot the result.

35

Exercise: ODE

• Use ode45 to solve for on the range t=[0 10], with
initial condition and

• Plot the result.

range t=[0t=[0range t=[0

• Make the following function
» function dydt=odefun(t,y)
» dydt=-t*y/10;

• Integrate the ODE function and plot the result
» [t,y]=ode45(‘odefun’,[0 10],10);

• Alternatively, use an anonymous function
» [t,y]=ode45(@(t,y) –t*y/10,[0 10],10);

• Plot the result
» plot(t,y);xlabel('Time');ylabel('y(t)');

36

Exercise: ODE

• The integrated function looks like this:

37

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

Lecture 4: Advanced Methods

6.057
Introduction to programming in MATLAB

Orhan Celiker

IAP 2019

1

Note about functions in files

• Whenever possible, write your functions in their own files

➢ e.g. myfun should be in a file by itself, and the file should
be called myfun.m*

➢ If you include more than one function per file, only the
first function is accessible in other scripts

➢ More info here:
https://www.mathworks.com/help/matlab/matlab_prog/c
reate-functions-in-files.html

* If filename and function name differs, MATLAB recognizes your
function by its filename**, not the function name

** yes, this is very confusing :(

2

https://www.mathworks.com/help/matlab/matlab_prog/create-functions-in-files.html

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images
(4) File I/O

3

Statistics

• Whenever analyzing data, you have to compute statistics
» scores = 100*rand(1,100); % random data

• Built-in functions
➢ mean, median, mode

• To group data into a histogram
» hist(scores,5:10:95);
➢ makes a histogram with bins centered at 5, 15, 25…95

» hist(scores,20);
➢ makes a histogram with 20 bins

» N=histc(scores,0:10:100);
➢ returns the number of occurrences between the specified

bin edges 0 to <10, 10 to <20…90 to <100. you can plot
these manually:

» bar(0:10:100,N,'r')
4

Random Numbers

• Many probabilistic processes rely on random numbers

• MATLAB contains the common distributions built in
» rand
➢ draws from the uniform distribution from 0 to 1

» randn
➢ draws from the standard normal distribution (Gaussian)

» random
➢ can give random numbers from many more distributions
➢ see help random

• You can also seed the random number generators
» rand('state',0); rand(1); rand(1);
rand('state',0); rand(1); % same random number

5

Changing Mean and Variance

• We can alter the given distributions
» y=rand(1,100)*10+5;
➢ gives 100 uniformly distributed numbers between 5 and 15

» y=floor(rand(1,100)*10+6);
➢ gives 100 uniformly distributed integers between 6 and 15.

floor or ceil is better to use here than round
➢ you can also use randi([6,15],1,100)

» y=randn(1,1000)
» y2=y*5+8
➢ increases std to 5 and makes the mean 8➢ increases

6

Exercise: Probability

• We will simulate Brownian motion in 1 dimension. Call the script
‘brwn’

• Make a 10,001 element vector of zeros
• Write a loop to keep track of the particle’s position at each time
• Assume middle of the vector is position 0. To get the new

position, pick a random number, and if it’s <0.5, go left; if it’s
>0.5, go right. Keep count of how many times each position is
visited.

• Plot a 50 bin histogram of the positions.

7

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images
(4) File I/O

8

Advanced Data Structures

• We have used 2D matrices
➢ Can have n-dimensions (e.g., RGB images)
➢ Every element must be the same type (ex. integers,

doubles, characters…)
➢ Matrices are space-efficient and convenient for calculation
➢ Large matrices with many zeros can be made sparse

– More on this later this lecture

• Sometimes, more complex data structures are more
appropriate

➢ Cell array: it's like an array, but elements don't have to be
the same type

➢ Structs: can bundle variable names and values into one
structure

– Like object oriented programming in MATLAB

9

Cells: organization

• A cell is just like a matrix, but each field can contain
anything (even other matrices):

3x3 Matrix 3x3 Cell Array

1.2 -3 5.5

-2.4 15 -10

7.8 -1.1 4

32

27 1

18

J o h n

M a r y

L e o

2
4

[]

3x3 Matrix

1.2 -3 5.5

-2.4 15 -10

7.8 -1.1 4

3x3 Cell Array

32

27 1

18

J oJ o h n

M aM a r y

L eL e o

2
4

[]

• One cell can contain people's names, ages, and the ages of
their children

• To do the same with matrices, you would need 3 variables
and padding 10

Cells: initialization

• To initialize a cell, specify the size
» a=cell(3,10);
➢ a will be a cell with 3 rows and 10 columns

• or do it manually, with curly braces {}
» c={'hello world',[1 5 6 2],rand(3,2)};
➢ c is a cell with 1 row and 3 columns

• Each element of a cell can be anything

• To access a cell element, use curly braces {}
» a{1,1}=[1 3 4 -10];
» a{2,1}='hello world 2';
» a{1,2}=c{3};

11

Exercise: Cells

• Write a script called sentGen
• Make a 2x3 cell, and put three names into the first row,

and adjectives into the second row
• Pick two random integers (values 1 to 3)
• Display a sentence of the form '[name] is [adjective].'
• Run the script a few times

12

Structs

• Structs allow you to name and bundle relevant variables
➢ Like C-structs, which are containers with fields

• To initialize an empty struct:
» s=struct;

➢ size(s) will be 1x1
➢ initialization is optional but is recommended when using large

structs

• To add fields
» s.name = ‘Leo';
» s.age = 18;
» s.childAge = [];

➢ Fields can be anything: matrix, cell, even struct
➢ Useful for keeping variables together

• For more information, see help struct
13

Struct Arrays

• To initialize a struct array, give field, values pairs
» ppl=struct('name',{'John','Mary','Leo'},...
'age',{32,27,18},'childAge',{[2;4],1,[]});
➢ size(ppl)=1x3
➢ every cell must have the same size

» person=ppl(2);
➢ person is now a struct with fields name, age, children
➢ the values of the fields are the second index into each cell

» ppl(3)=s;
➢ adds struct (fields must match)

» person.name
➢ returns 'Mary'

» ppl(1).age
➢ returns 32

ppl ppl(1) ppl(2) ppl(3)

name:

age:
'John' 'Mary' 'Leo'

32 27 18
childAge: [2;4] 1 []

'John'

32
[2;4]

'Mary'

27
1

'Leo'

18
[]

ppl(1) ppl(2) ppl(3)ppl(1) ppl(2) ppl(3)ppl(1) ppl(2) ppl(3)

Structs: Access

• To access 1x1 struct fields, give name of the field
» stu=s.name;
» a=s.age;
➢ 1x1 structs are useful when passing many variables to a

function. Put them all in a struct, and pass the struct

• To access nx1 struct arrays, use indices
» person=ppl(2);
➢ person is a struct with name, age, and child age

» personName=ppl(2).name;
➢ personName is 'Mary'

» a=[ppl.age];
➢ a is a 1x3 vector of the ages; this may not always work,

the vectors must be able to be concatenated

15

Exercise: Structs

• Modify the script sentGen
• Create a struct array with a field “name” and a field “adj”

containing the values from the previous cell array
• Do not create it from scratch! Use the previously defined

cell array!
• Modify the display command to use the struct array
• Run the script a few times

16

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images
(4) File I/O

17

Handles

• Manipulate graphics objects using ‘handles’
» L=plot(1:10,rand(1,10));
➢ gets the handle for the plotted line

» A=gca;
➢ gets the handle for the current axis

» F=gcf;
➢ gets the handle for the current figure

• To see the current property values, use get
» get(L);
» yVals=get(L,'YData');

• To change the properties, use set
» set(A,'FontName','Arial','XScale','log');
» set(L,'LineWidth',1.5,'Marker','*');

• Everything you see in a figure is completely customizable
through handles 18

Reading/Writing Images

• Images can be imported as a matrix of pixel values
» im=imread('myPic.jpg');
» imshow(im);

• Matlab supports almost all image formats
➢ jpeg, tiff, gif, bmp, png, …
➢ see help imread for details (e.g., pixel format and types)

• To write an image, give:
➢ rgb matrix (0 to 1 doubles, or 0 to 255 uint8)

» imwrite(rand(300,300,3),'t1.jpg');
➢ indices and colormap

» imwrite(ceil(rand(200)*256),jet(256),'t2.jpg');
➢ see help imwrite for more options

19

MATLAB's built-in images

AT3_1m4_01.tif
AT3_1m4_03.tif
AT3_1m4_05.tif
AT3_1m4_07.tif
AT3_1m4_09.tif

autumn.tif
blobs.png

cameraman.tif
cell.tif

circles.png
coins.png

 concordorthophoto.png
fabric.png
forest.tif
glass.png

hestain.png
liftingbody.png

m83.tif
moon.tif

office_1.jpg
office_3.jpg
office_5.jpg

onion.png
pears.png

pillsetc.png
rice.png

shadow.tif
spine.tif

testpat1.png
tire.tif
trees.tif

westconcordorthophoto.png

AT3_1m4_02.tif
AT3_1m4_04.tif
AT3_1m4_06.tif
AT3_1m4_08.tif
AT3_1m4_10.tif

bag.png
board.tif
canoe.tif
circbw.tif
circuit.tif

concordaerial.png
eight.tif

football.jpg
gantrycrane.png

greens.jpg
kids.tif
logo.tif
mandi.tif
mri.tif

office_2.jpg
office_4.jpg
office_6.jpg
paper1.tif
peppers.png

pout.tif
saturn.png

snowflakes.png
tape.png
text.png

tissue.png
westconcordaerial.png

Load these like you'd load
anything else in your
current directory:

>> load(cameraman.tif');

20

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images
(4) File I/O

21

Importing Data

• Matlab is a great environment for processing data. If you
have a text file with some data:

• To import data from files on your hard drive, use
importdata
» a=importdata('textFile.txt');
➢ a is a struct with data, textdata, and colheaders fields

» x=a.data;
» names=a.colheaders;

22

Importing Data

• With importdata, you can also specify delimiters. For
example, for comma separated values, use:
» a=importdata('filename', ',');
➢ The second argument tells matlab that the tokens of

interest are separated by commas

• importdata is very robust, but sometimes it can have
trouble. To read files with more control, use fscanf (similar
to C/Java), textscan. See help for information on how to
use these functions

23

Writing Excel Files

• Matlab contains specific functions for reading and writing
Microsoft Excel files

• To write a matrix to an Excel file, use xlswrite
» xlswrite('randomNumbers',rand(10));
» xlswrite('randomNumbers',rand(10),...
'Sheet1','C11:L20');
➢ Sheet name and range optional

• You can also write a cell array if you have mixed data:
» C={'hello','goodbye';10,-2;-3,4};
» xlswrite('randomNumbers',C,'mixedData');

• See help xlswrite for more usage options
24

Reading Excel Files

• Reading excel files is equally easy

• To read from an Excel file, use xlsread
» [num,txt,raw]=xlsread('randomNumbers.xls');
➢ Reads the first sheet
➢ num contains numbers, txt contains strings,

raw is the entire cell array containing everything
» [num,txt,raw]=xlsread('randomNumbers.xls',...
'mixedData');
➢ Reads the mixedData sheet

» [num,txt,raw]=xlsread('randomNumbers.xls',-1);
➢ Opens the file in an Excel window and lets you click on the

data you want!

• See help xlsread for even more fancy options
25

Reading ANY File

• You can read any file as binary data

• To read from a file, use fopen
» fid = fopen(‘fileName’, ‘r’);
➢ Returns a handle to a file

» data = fread(fid, 10);
➢ Reads the next 10 bytes from the file and stores them in

data
» fseek(fid, 5, 0);
➢ Moves forward 5 bytes from the current position

• See help fopen/fread/fwrite/ftell/fseek for even more
fancy options

26

Lecture 5

• Not mandatory – but highly recommended!

• More cool stuff Matlab has to offer

• Some things we can cover:
• Animations
• Build a GUI for your projects!
• Use cool toolboxes
• Interact with hardware (scopes, analyzers, Arduino,

Raspberry PI, Lego Mindstorm…)
• Use Simulink to graphically build complex systems and

simulate
• Do image processing
• Plus… No Homework assignment!

27

Don’t Forget….

• Comment your code!

• help and Google are your best friends –
use them!

• Vectorize whenever possible

• Matlab is powerful but it is not a substitute
for your own insights

28

End of Lecture 4

(1) Probability and Statistics
(2) Data Structures
(3) Images
(4) File I/O

THE END (ALMOST)

29

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

6.057
Introduction to programming in MATLAB

Lecture 5: Various functions and toolboxes

Orhan Celiker

IAP 2019

Outline

• Documentation
• Misc. Useful Functions
• Graphical User Interfaces
• Simulink
• Symbolic Toolbox
• Image Processing
• Hardware Interface

22

Official Documentation
• http://www.mathworks.com/help/matlab/

.

&RXUWHV\�RI�7KH�0DWK:RUNV��,QF��8VHG�ZLWK�SHUPLVVLRQ��0$7/$%�DQG�6LPXOLQN�DUH�UHJLVWHUHG�WUDGHPDUNV�RI�7KH�0DWK:RUNV��,QF���6HH�
ZZZ�PDWKZRUNV�FRP�WUDGHPDUNV�IRU�D�OLVW�RI�DGGLWLRQDO�WUDGHPDUNV���2WKHU�SURGXFW�RU�EUDQG�QDPHV�PD\�EH�WUDGHPDUNV�RU�UHJLVWHUHG�WUDGHPDUNV�RI�WKHLU�
UHVSHFWLYH�KROGHUV�

http://www.mathworks.com/help/matlab/
www.mathworks.com/trademarks
http://www.mathworks.com/help/matlab

Miscellaneous Matlab (1)

• The command deal can make variable initialization simpler
» [x, y, z] = deal(zeros(20, 30));
» [a, b, c, d] = 5;
» [m, n] = deal(1, 100);

• The command eval can execute a string!
» a1 = 1; n = 1;
» eval([‘a’ num2str(n) ‘ = 5;’]);
» disp([‘a1 is now ‘ num2str(a1)]);

• The command repmat can create replicas easily
» A = repmat([1 2;3 4], 2, 2);

• Execute Perl scripts using the command perl
» perl(‘myPerlFile.pl’);

4

https://perl(�myPerlFile.pl

Miscellaneous Matlab (2)

• Use regexp for powerful regular expression operations
» str = ‘The staff email is example@example.edu’;
» pat = '([\w-.])+@([\w-.])+‘;
» r = regexp(str, pat, 'tokens')
» name = r{1}{1}; % name = ‘6.057-staff’
» domain = r{1}{2}; % domain = ‘mit.edu’

• Set the root defaults by using the handle 0
» get(0, ‘Default’)
» set(0, ‘DefaultLineLineWidth’, 2);

• Edit the datatip text display function to show customized
information

• You can also import Java classes (but don’t)
» import java.util.Scanner

• If you’re not sure about something – just ask Matlab why

mailto:w-.])+@([\w
mailto:6.057-staff@mit.edu

Making GUIs
• It's really easy to make a graphical user interface in Matlab
• To open the graphical user interface development

environment, type guide
» guide

• Select Blank GUI

7

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Draw the GUI
• Select objects from the left, and draw them where you

want them

8

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Change Object Settings
• Double-click on objects to open the Inspector. Here you can

change all the object's properties.

9

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Save the GUI
• When you have modified all the properties, you can save

the GUI
• Matlab saves the GUI as a .fig file, and generates an m-file!

10

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Add Functionality to M-File
• To add functionality to your buttons, add commands to the

'Callback' functions in the m-file. For example, when the
user clicks the Draw Image button, the
drawimage_Callback function will be called and executed

• All the data for the GUI is stored in the handles, so use set
and get to get data and change it if necessary

• Any time you change the handles, save it using guidata
» guidata(handles.Figure1,handles);

11

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Running the GUI
• To run the GUI, just type its name in the command window

and the GUI will pop up. The debugger is really helpful for
writing GUIs because it lets you see inside the GUI

12

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

GUI Helper Functions

• Use keyboard to allow debugging from command window.
GUI variables will appear in the workspace. Use return to
exit debug mode

• Use built-in GUI modals for user input:
» uigetfile
» uiputfile
» inputdlg

•And more… (see help for details)

13

SIMULINK

• Interactive graphical environment
• Block diagram based MATLAB add-on environment
• Design, simulate, implement, and test control, signal

processing, communications, and other time-varying
systems

14

Simulink 5.0.2. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Getting Started

• In MATLAB,
Start Simulink

•Create a new
Simulink file,
similar to how
you make a new
script

art Simulink

�5

."5-"# R2019b BnE Simulink �.�. $PuSUFTZ PG 5IF .BUI8PSkT
 *nD. 6TFE XiUI QFSmiTTiPn. ."5-"# BnE Simulink BSF SFHiTUFSFE USBEFmBSkT PG 5IF .BUI8PSkT
 *nD.
SFF XXX.mBUIXPSkT.DPm�USBEFmBSkT GPS B liTU PG BEEiUiPnBl USBEFmBSkT. 0UIFS QSPEuDU PS CSBnE nBmFT mBZ CF USBEFmBSkT PS SFHiTUFSFE USBEFmBSkT PG UIFiS SFTQFDUiWF
IPlEFST.

www.mathworks.com/trademarks

Simulink Library Browser
• The Library Browser contains various blocks that you can

put into your model
• Examine some blocks:

!Click on a library: “Sources”
– Drag a block into Simulink: “Band limited white noise”

! Visualize the block by going into “Sinks”
– Drag a “Scope” into Simulink

MATLAB version 7.6.0 and Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks,

16

Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

www.mathworks.com/trademarks

Connections

• Click on the carat/arrow on the right of the band
limited white noise box

• Drag the line to the scope
!You’ll get a hint saying you can quickly connect

blocks by hitting Ctrl
!Connections between lines represent signals

• Click the play buttonplay

• Double click on the scope.
!This will open up a chart of the variable over the

simulation time 17

Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective
holders.

www.mathworks.com/trademarks

Connections, Block Specification
• To split connections, hold down ‘Ctrl’ when clicking on a

connection, and drag it to the target block; or drag
backwards from the target block

• To modify properties of a block, double-click it and fill in
the property values.

18

Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective
holders.

www.mathworks.com/trademarks

Behind the curtain
• Go to “Simulation”->”Configuration Parameters”

at the top menu
See ode45? Change the solver type here

19

Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective
holders.

www.mathworks.com/trademarks

Exercise: Bouncing Ball Model

• Let’s consider the following 1 dimensional problem
• A rubber ball is thrown from height h0 with initial velocity

v0 in the z-axis (up/down).
• When the ball hits the ground (z=0), its velocity

instantaneously flips direction and is attenuated by the
impact

v0

v
g

h0

κv

20

Exercise: Bouncing Ball Model

• Let’s consider the following 1 dimensional problem
• A rubber ball is thrown from height h0 with initial velocity

v0 in the z-axis (up/down).
• When the ball hits the ground (z=0), its velocity

instantaneously flips direction and is attenuated by the
impact

d 2 z dz + -m = mg v ()t = v (t) = -kv (t) z=0 z=0 dt 2 dt
z t(= 0) = h0 v (t = 0) = v0

• Integrating, we can obtain the balls height and velocity as a
function of time

t t

v ()t = t z () = v t t gd t () d ò ò
0 0 21

Exercise: Simulink Model
• Using the second order integrator with limits and reset,

our model will look like this

22

Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective
holders.

www.mathworks.com/trademarks

Exercise: Simulink Results
• Running the model yields the balls height and velocity as a

function of time

23

Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective
holders.

www.mathworks.com/trademarks

Toolboxes

• Math
•Takes the signal and performs a math operation

» Add, subtract, round, multiply, gain, angle

• Continuous
•Adds differential equations to the system

» Integrals, Derivatives, Transfer Functions,
State Space

• Discontinuities
•Adds nonlinearities to your system

• Discrete
•Simulates discrete difference equations
•Useful for digital systems

24

Building systems

• Sources
» Step input, white noise, custom input, sine
wave, ramp input,

•Provides input to your system
• Sinks

» Scope: Outputs to plot
» simout: Outputs to a MATLAB vector (struct) on
workspace

» Matlab mat file

25

Symbolic Toolbox

• Don’t do nasty calculations by hand!
• Symbolics vs. Numerics

Symbolic

Numeric

Advantages

•Analytical solutions
•Lets you intuit
things about
solution form
•Always get a
solution
•Can make solutions
accurate
•Easy to code

Disadvantages

•Sometimes can't be
solved
•Can be overly
complicated
•Hard to extract a
deeper understanding
•Num. methods
sometimes fail
•Can take a while to
compute

26

Symbolic Variables

• Symbolic variables are a type, like double or char

• To make symbolic variables, use sym
» a=sym('1/3');
» b=sym('4/5');
» mat=sym([1 2;3 4]);

• fractions remain as fractions
» c=sym('c','positive');

• can add tags to narrow down scope
• see help sym for a list of tags

• Or use syms
» syms x y real

• shorthand for x=sym('x','real'); y=sym('y','real');
27

Symbolic Expressions

• Multiply, add, divide expressions
» d=a*b

• does 1/3*4/5=4/15;

» expand((a-c)^2);
•multiplies out

» factor(ans)
• factors the expression

» pretty(ans)
•makes it look nicer

28

Cleaning up Symbolic Statements

collect(3*x+4*y-1/3*x^2-x+3/2*y)

simplify(cos(x)^2+sin(x)^2)
• simplifies expressions

subs('c^2',c,5)
• replaces variables with numbers

»

• collects terms

»

»

or expressions. To do multiple substitutions
pass a cell of variable names followed by a cell of values

» subs('c^2',c,x/7)

29

More Symbolic Operations

• We can do symbolics with matrices too
» mat=sym('[a b;c d]');
» mat=sym('A%d%d', [2 2]);

• symbolic matrix of specified size

»

»

»

mat2=mat*[1 3;4 -2];
• compute the product

d=det(mat)
• compute the determinant

i=inv(mat)
• find the inverse

• You can access symbolic matrix elements as before
» i(1,2)

30

Exercise: Symbolics

• The equation of a circle of radius r centered at (a,b) is
2given by: (x a-)2 + (y -b)2 = r

• Use solve to solve this equation for x and then for y

• It’s always annoying to integrate by parts. Use int to do
the following integral symbolically and then compute the
value by substituting 0 for a and 2 for b: b

xexdxò
a

31

Exercise: Symbolics

• The equation of a circle of radius r centered at (a,b) is
2given by: (x a-)2 + (y -b)2 = r

• Use solve to solve this equation for x and then for y

» syms a b r x y
» solve('(x-a)^2+(y-b)^2=r^2','x')
» solve('(x-a)^2+(y-b)^2=r^2','y')

• It’s always annoying to integrate by parts. Use int to do
the following integral symbolically and then compute the
value by substituting 0 for a and 2 for b: b

xexdxò
» Q=int('x*exp(x)',a,b) a

» subs(Q,{a,b},{0,2})
32

Image Processing
• http://www.mathworks.com/help/images/index.html

33

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

http://www.mathworks.com/help/images/index.html
www.mathworks.com/trademarks

Image Processing

• Image enhancement
• Adjust image contrast, intensities, etc.

• Filtering and deblurring
•Convolution and deconvolution

• Finding edges
• Image gradient, edge

• Finding circles
•Hough transform

• Training an object detector
•Computer vision toolbox: trainCascadeObjectDetector

34

Image Processing

• Image Restoration
•Denoising

• Image Enhancement & Analysis
•Contrast Improvement

– imadjust, histeq, adapthisteq

•Edge Detection
– edge

•Image Sharpening
•Image Segmentation

• Image Compression
•Wavelet toolbox (Chap. 3 of Gonzalez book on DIP)

Lena image © Playboy. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

35

ocw.mit.edu/help/faq-fair-use

Exercise: Contrast Improvement

• In this exercise, first we want to load the image
“pout.tif”. You can use imread.

• Then for a better comparison we want our image
to have a width of 200 pixels. Use imresize

• Finally, we want to compare the results of three
functions imadjust, histeq, adapthisteq for
contrast enhancement. Display the original image
and the three enhanced images in a single figure.

36

 Exercise: Contrast Improvement

» % Loading the our image into the workspace
» Image = imread('pout.tif');
»

» % For comparison, it is better to have a predefined width
» width = 200;
»

» % Resizing the image using bicubic interpolation
» dim = size(Image);
» Image = imresize(Image , width * [dim(1) / dim(2) 1] , 'bicubic');
»

» % Adjusting the contrast using imadjust
» Image_imadjust = imadjust(Image);
»

» % Adjusting the contrast using histogram equalization
» Image_histeq = histeq(Image);
»

» % Adjusting the contrast using adaptive histogram equalization
» Image_adapthisteq = adapthisteq(Image);
»

37

 Exercise: Contrast Improvement

» % Displaying the original image and the results in a single figure to compare with each other
» figure
» subplot(2 , 2 , 1);
» imshow(Image);
» title('Original Image');
»

» subplot(2 , 2 , 2);
» imshow(Image_imadjust);
» title('Enhanced Image using Imadjust');
»

» subplot(2 , 2 , 3);
» imshow(Image_histeq);
» title('Enhanced Image using Histeq');
»
» subplot(2 , 2 , 4);
» imshow(Image_adapthisteq);
» title('Enhanced Image using Adapthisteq');

38

Exercise: Contrast Improvement

Original Image Enhanced Image using Imadjust

Enhanced Image using Histeq Enhanced Image using Adapthisteq

39

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

www.mathworks.com/trademarks

Exercise: Edge Detection

• We know that edge detection is mainly highpass
filtering the image.

• First load the image “circuit.tif” and then plot the
edges in that figure using the function edge and
the filters “sobel”, “prewitt”. Also use
“canny” as another method for edge detection
using edge.

40

 Exercise: Edge Detection

» I = imread('circuit.tif');

» I1 = edge(I , 'sobel');
» I2 = edge(I , 'canny');
» I3 = edge(I , 'prewitt');
»

» figure
» subplot(2 , 2 , 1);
» imshow(I);

» title('Original Image');
»

» subplot(2 , 2 , 2);
» imshow(I1);
» title('Edges found using sobel filter');
»

» subplot(2 , 2 , 3);
» imshow(I2);
» title('Edges found using the "canny" method');
»

» subplot(2 , 2 , 4);
» imshow(I3);

» title('Edges found using prewitt filter');
41

Exercise: Edge Detection
Original Image Edges found using sobel filter

Edges found using the "canny" method Edges found using prewitt filter

42
© Steve Decker and Shujaat Nadeem. All rights reserved. This content is excluded from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/

ocw.mit.edu/help/faq-fair-use

43

Image Enhancement

• Commonly-used: imread, imwrite, imshow, imresize
» im = imread('pout.tif');

% image included in toolbox
» imtool(im);

•Convenient for editing in figure window

• Adjust intensity values / colormap
» imadjust(im);

• Increase contrast
(1% of data saturated at low/high intensities)

» imadjust(im,[.4 .6],[0 1]);

•Clips off intensities below .4 and above .6
Stretches resulting intensities to 0 and 1

•What happens if used [1 0] instead of [0 1]?
• Also works for RGB; see doc

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

www.mathworks.com/trademarks

Filtering and Deblurring
Pillbox filter:
f = fspecial('disk',10);
imblur = imfilter(im,f);
deconvblind(imblur,f);

Linear motion blur:
f=fspecial('motion’,30,135);
imblur = imfilter(im,f);
deconvblind(imblur,f);

44

Lena image © Playboy. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

ocw.mit.edu/help/faq-fair-use

Finding Edges

• Image gradients: imgradient, imgradientxy
• Application: edge

» edge(im); % Sobel
» edge(im, 'canny');

• Images must be in grayscale
» rgb2gray

Original
(coins.png) Sobel Laplacian Canny

Coins image courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

Lena image © Playboy. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

45

ocw.mit.edu/help/faq-fair-use
www.mathworks.com/trademarks

46

Other Cool Stuff

• Finding circles
» im = imread('coins.png');
» [centers,radii,metric] = imfindcircles(im, [15 30]);

• Finds circles with radii within range, ordered by strength
» imshow(im)
» viscircles(centers(1:5,:), radii(1:5));

• Extract other shapes
with Hough transform

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

www.mathworks.com/trademarks

… and also Computer Vision
• http://www.mathworks.com/help/vision/index.html

47

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of
their respective holders.

http://www.mathworks.com/help/vision/index.html
www.mathworks.com/trademarks

… and also Computer Vision
• http://www.mathworks.com/help/vision/functionlist.html

Also consider OpenCV+MATLAB
http://www.mathworks.com/dis
covery/matlab-opencv.html
48

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks
of their respective holders.

http://www.mathworks.com/help/vision/functionlist.html
http://www.mathworks.com/discovery/matlab-opencv.html
www.mathworks.com/trademarks

Object Detection

• Train a cascade object detector (introduced in R2013a)
• http://www.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html
• http://www.mathworks.com/help/vision/ref/traincascadeobjectdetector.html

• Inputs to trainCascadeObjectDetector:
• Image files with bounding boxes for positive instances
• Image files of negative instances (‘background’)
•Optional: FP/TP rates, # cascade stages, feature type

• Output: An XML file with object detector parameters
» detector=vision.CascadeObjectDetector('my.xml');

• Use the detector on new images:
» bbox=step(detector, imread('testImage.jpg'));

• See links above for full example
49

http://www.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html
http://www.mathworks.com/help/vision/ref/traincascadeobjectdetector.html
http://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetectorclass.html

Machine Learning (Stats Toolbox)
• http://www.mathworks.com/help/stats/index.html

48

50

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of
their respective holders.

http://www.mathworks.com/help/stats/index.html
www.mathworks.com/trademarks

Hardware Interface

• Matlab can interact directly with many forms of external
hardware, from lab equipment to standalone micro-
controllers

• Interaction can be done at various levels of abstraction
• Ideal when processor intensive DSP is required and target

system cannot handle it on it’s own
• Probably not suitable for real-time systems due to the

communication overhead

51

Low Level

• Most basic link – through the serial port using serial
» s = serial(‘com3’)

•Can also provide additional properties,
see help serial

• From here on, treat s as a file handler
» fopen(s)
» fwrite(s, data)
» fprintf(s, ‘string’);
» res = fscanf(s);

• Don’t forget to close!
» fclose(s);

52

GPIB

• GPIB – General Purpose Interface Bus (IEEE-488)
• Created by HP in the 1960’s, but highly adopted today in

many lab instruments
• A standardized communication protocol for sending and

receiving information
• Simply create using the command gpib

» g = gpib(‘agilent’, 7, 1);
•See help gpib for option details
•From now on, treat as file handler

» fopen(g);
» fprintf(g, ‘*IDN?’)
» idn = fscanf(g);

• Don’t forget to close!
» fclose(g);

53

Higher Levels

• Customized function packages for different platforms
created by Mathworks and the user community

• http://www.mathworks.com/hardware-support/home.html
• http://makerzone.mathworks.com/

54

http://www.mathworks.com/hardware-support/home.html
http://makerzone.mathworks.com/

Where to go from here

• 6.555 Biomedical Signal and Image Processing*
• EdX MATLAB courses

https://www.edx.org/learn/matlab
• GNU Octave (free software implementation of MATLAB)

https://www.gnu.org/software/octave/
• MathWorks itself?

*and probably many other courses I’m not aware of

55

https://www.edx.org/learn/matlab
https://www.gnu.org/software/octave/

Takeaway lessons

• MATLAB is a MATrix LABoratory; optimized for parallel
processing of large data

• It simplifies your computation, but cannot provide insights
on its own

• Use MATLAB to process data, but always interpret results
yourself

• When possible, vectorize computations for faster results
• Use help all day and every day
• If in doubt, Google your problem: MATLAB has excellent

online documentation, and Stack
Overflow has tons of answers

• Master the use of traceback and
debugging tools

• Have fun!

56

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	Lecture #1 - Introduction to MATLAB
	Lecture #2 - Visualization and Programming
	Lecture #3 - Solving Equations, Curve Fitting, and Numerical Techniques
	Lecture #4 - Advanced Methods
	Lecture #5 - Various Functions and Toolboxes
	Blank Page

