6.057
Introduction to MATLAB

Orhan Celiker, IAP 2019

Gourse Layout

Problem sets

e One per day, should take about 4 hours to complete
e Submit Word or PDF, include code and figures
e Some questions optional, but highly recommended!

Requirements for passing

Attend 3/4 lectures (Friday is optional)
e Complete all problem sets (graded on a 3-level scale: -, V, +)...
e .. and achieve average

Prerequisites: You'll be fine!)

MATLAB Basics

e MATLAB can be thought of as a super-powerful graphing calculator
o Remember the TI-83 from calculus?
o With many more buttons (built-in functions)

e In addition, it is a programming language
o MATLAB is an interpreted language, like Python
o Commands are executed line-by-line

l.
1.
1.
V.
V.

Getting Started

Scripts

Making Variables
Manipulating Variables
Basic Plotting

Getting Started

e To get MATLAB Student Version for yourself

e You can also use MATLAB online
o https://matlab.mathworks.com (requires Mathworks account with license)

https://matlab.mathworks.com/

MATLAB R2018a - academic use

@‘! Q Search Documentation m

i ,‘ I‘a @

e

PUBLISH VIEW

"i‘P | (3 i e =t et 5 & il ~ @ D @ |2] Run Section &E
= __ l/Compare cCjGoTow Comment % g2 73 _) - "
LNEve Dpsn Save : S = inceskpoims | SRen. SRimand | Coatvance Runand
T T R | e Gl Y gy e = e :
FILE NAVIGATE EDIT BREAKPOINTS | RUN I—ﬂ
<= = F| 0/ r Users » oceliker b Documents » MATLAB » =
Current Folder & |[# Editor - /Users/oceliker/Documents/MATLAB/sample.m ® x Workspace ®
I Name & | sample.m o] | Name & Value
1 W |
Editor
Current Directory Camand Window
New to MATLAB? See resources for Getting Started. %
-'65 -1
Workspace
Command Window
Details v
Details
Select a file to view details

MATLAB R2018a. '
www.mathworks.com/trademarks for a list of addltlonal trademarks Other product or brand names may be trademarks or registered trademarks of thelr respective holders.

www.mathworks.com/trademarks

EDITOR PUBLISH

(_JJ Open Variable ¥ {7 Run and Time

&S (2 ¥l Qsearch Documentation

(=1 =] Mo IS o LT [2. New Variable P2 Analyze Code = 3 | (*§ Communi
Lq} e Gd L3 [JrndFiles ig g = s — L Analy \EJ = ﬁ% Y < i

& Set Path f Request Support

New New New Open | .-/ Compare Import Save Favorites - Simulink Jfyout Add-Ons Help
Script Live Script ¥ bt Data Workspace }g) Clear Workspace ¥ v |-# Clear Commands ¥ W “ﬂ Parallel v v v Q Learn MATLAB
FILE VARIABLE CODE SIMLRIK ENVIRONMENT RESOURCES

Log In

2

e In the top ribbon, navigate to: o s

Home -> Environment -> Preferences T

Comparison

Current Folder
Editor/Debugger
Figure Copy Template
Fonts

e Allows you to customize your oE

Help
. Keyboard
Toolbars
MATLAB experience (colors, fonts,
Web
Workspace
etc .) Simulink
Computer Vision System Toolbox
Image Acquisition Toolbox
Image Processing Toolbox
Instrument Control Toolbox
MATLAB Compiler
Parallel Computing Toolbox
Simscape
Simulink 3D Animation
Simulink Control Design

Preferences

MATLAE Current Folder Preferences

History

Number of most recent folders to save: 20 2 Clear History

Refresh
Auto-refresh view from file system

of seconds b 1 auto-refresh: 3=

Path indication
Indicate inaccessible files (e.g. not on path, private folders)
Text and icon transparency:

Show tooltip explaining why files are inaccessible

Not on Path
On Path
#') sample.m

Toolbar
To add, remove, and rearrange controls, customize the toolbar.

Initial working folder

View initial working folder preferences
Hidden files
Show hidden files and folders

GG o Apply

MATLAB R2018a. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

PLOTS

APPS EDITOR PUBLISH VIEW

[=] = g 41 mim 2. New Variable P>
2 el Od U endries M 0 = .
: Ll» Open Variable ¥ .
New New New Open | -] Compare Import Save § Favorites
Script Live Script ¥ bt Data Workspace }g) Clear Workspace ¥ v

FILE

VARIABLE

|7 Analyze Code
é'f Run and Time

|/# Clear Commands ¥ -

CODE

\i | {0} Preferences

[} Set Path

Simulink Layout

SIMULINK

Installing Toolhoxes

e In the top ribbon, navigate to:

Home -> Environment -> Add-On

e Allows you to install toolboxes
included with your license

Recommended toolboxes:

©)

o O O O

©)

Curve Fitting Toolbox

Computer Vision System Toolbox
Image Processing Toolbox
Optimization Toolbox

Signal Processing Toolbox

and anything related to your field!

@& R2018b now available

Filter by Source

Filter by Category
Using MATLAB

Applications

Using Simulink

H: G099~

@ 5§ Community

= Request Support
Help —

¥ [Z Learn MATLAB
RESOURCES

QSearch Documentation Log In

2

/Add-On Explorer

MathWorks Toolboxes and Products Show All 92

ics and [+ Vision System Robotics System Toolbox
Learning Toolbox Toolbox

Ay

Community Toolboxes Show All 1,048

- |

™
Simulink Onramp

MATLAB

Community Apps Show All 244
N —

MATLAB R2018a. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Making Eolders

e Use folders to keep your programs organized
e To make a new folder, click "Browse" next to the file path

FILE MNAVIGA
%« » 7| / » Users » oceliker

Current Folder
BB Name a

e Click the Make New Folder button, and change the name of the folder. In the

MATLAB folder (which should be open by default), make the following folder
structure:

MATLAB
L TAP MATLAB
N Day1 9

MATLAB R2018a. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Help/Docs

e help

o The most important command for learning MATLAB on your own!

e To getinfo on how to use a function:
o help sin
m Help lists related functions at the bottom and links to the documentation

e To get a nicer version of help with examples and easy-to-read description:
o doc sin

e To search for a function by specifying keywords:
o docsearch sin trigonometric

10

l.
1.
1.
V.
V.

Getting Started
Scripts

Making Variables
Manipulating Variables
Basic Plotting

11

Scripts: Overview

e Scripts are
o Collection of commands executed in sequence
o Written in the MATLAB editor
o Saved as m-files (.m extension)
e To create an m-file from the command line:
o edit MyFileName.m
o or click the "New Script" button on the top left

12

Scripts: Some notes

e COMMENT!
o Anything following a % sign is interpreted as a comment
o The first contiguous comment becomes the script's help file
o Comment thoroughly to avoid wasting time later!
o Mark beginning of a code block by using %%

e Note that scripts are somewhat static, with no explicit input and output
e All variables created or modified in a script retain their values after script
execution

13

e Make a script with the name helloWorld.m
e When run, the script should show the following text:

Hello world!
I am going to learn MATLAB!

Hint: Use disp(. . .) to display strings. Strings are written between single
quotes, e.g. 'This is a string’

14

l.
1.
1.
V.
V.

Getting Started
Scripts
Making Variables

Manipulating Variables
Basic Plotting

15

Variable Types

e MATLAB is a "weakly typed" language

o No need to initialize variables!
e MATLAB supports various types; the most popular ones are

o 3.84

m 64-bit double (default)
o 'A'

m 16-bit char

e Most variables you'll deal with are vectors, matrices, doubles or chars
e Other types are also supported: complex, symbolic, 16-bit and 8-bit integers
(uint16 & uint8), etc.

16

Naming Variables

To create a variable, simply assign a value to a name:

3.14
'hello world!'’

myNumberVariable
myStringVariable

Variable name rules

o First character must be a LETTER
o After that, any combination of numbers, letters and _
o Names are CASE-SENSITIVE (e.g. var1 is different than Var1)

17

Naming Variables (cont.)

Built-in variables (don't use these names for anything else!):
i, Jj: canbe used to indicate complex numbers*
pi: has the value 3.1415...
ans: stores the result of the last unassigned value
Inf, -Inf: infinities

NaN: "Not a Number"

ops,use ii, jj, kk, etc.forloop counters.,

e A variable can be given a value explicitly
o a =10
o Shows up in workspace!
e Or as a function of explicit values and existing variables
o ¢ =1.3 *45 - 2 * a
e To suppress output, end the line with a semicolon
o cooldude = 13/3;

19

Arrays

e Like other programming languages, arrays are an important part of MATLAB

e Two types of arrays:

o Matrix of numbers (either double or complex)
o Cell array of objects (more advanced data structure)

20

Row vectors

® Row vector:. comma- or space-separated values between square brackets
o row=1[123.2465.4];
o row=1_[1, 2, 4,7, 4.3, 1.1 1;

e Command window:
>> row=[1l 2 5.4 -6.6]

row =

1.0000 2.0000 5.4000 -6.6000

Workspace

e Workspace:

=B | B 5 st \‘ |
Name Size Bytes Class
ff row 1x4 32|double array

21

MATLARB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Column vectors

e Column vector: semicolon-separated values between square brackets
o col =1[1;2; 3.2; 4; 6; 5.4];

e Command window:

>> column=[4;2;7;4]

column =
4
2
7
4
R Workspace [E][ZI
e Workspace: g . S]
Name Size Bytes Class
ff column ’4}(1 ’ 32‘double array

22

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Size and length

e You can tell the difference between a row and a column by:
o Looking in the workspace
o Displaying the variable in the command window
o Using the size function

>> gize (row) >> sgize {column)
ans = ans =

1 4 4 1
>> length {(row) >> length{column})
ans = ans =

23

MMatrices

e Make matrices like vectors {1 2}
o Element by element a@=
m a= [1 2g;4];/’//7’ 3 4

e By concatenating vectors or matrices (dimension matters)

1
3
25,
a;
d
|

ee] [a b a]];
= ['Hello, I am ' 'John'];

e Strings are character vectors 2

w -h O Q O T QO
2 1l

save/clear/load

e Use save to save variables to a file

save myFile a b

Saves variables a and b to the file myFile.mat in the current directory
Default working directory is MATLAB unless you navigate to another folder
Make sure you are in the correct folder. Right now we should be in
\MATLAB\IAP MATLAB\Day 1

e Use clear to save variables to a file
o clear a b
o Look at workspace: variables a and b are gone
e Use load to load variables into the workspace

o load myFile
o Look at workspace: a and b are back

o O O O

25

Exercise: Variables

Get and save the current date and time

Create a variable start using the function clock

What is the size of start? Is it a row or column?

What does start contain? See help clock

Convert the vector start to a string. Use the function datestr and name the
new variable startString

e Save start and startString into a mat file named startTime

26

Exercise: Variables 11

e In helloWorld.m, read in variables you saved using load
e Display the following text:

I started learning MATLAB on [date, time]

e Hint: Use the disp command again
e Remember that strings are just vectors of characters, so you can join two
strings by making a row vector with the two strings as sub-vectors.

27

l.
1.
1.
V.
V.

Getting Started

Scripts

Making Variables
Manipulating Variables

Basic Plotting

28

Basic Scalar Operations

e Arithmetic operations (+, -, *, /)

o 7/45
o (1+1i)*(1+21)
o 1/0
o 0/6
e Exponentiation
o 472

o (3+4%1j)"2
e Complicated expressions: use parentheses

o ((2+3)*3)"0.1

29

e MATLAB has an enormous library of built-in functions

e Call using parentheses, passing parameters to function
o sqrt(2)

log(2), log10(0.23)

cos(1.2), atan(-.8)

exp(2+4%11i)

round(1.4), floor(3.3), ceil(4.23)

angle(1i); abs(1+11i);

o O O O O

30

helloWor1ld script:

e Your learning time constant is 1.5 days. Calculate the number of seconds in 1.5 days and name this
variable tau

e This class lasts 5 days. Calculate the number of seconds in 5 days and name this variable
endOfClass
e This equation describes your knowledge as a function of time t:

k=1-e""

e How well will you know MATLAB at endOfClass? Name this variable knowledgeAtEnd (use exp)
e Using the value of knowledgeAtEnd, display the phrase:

At the end of 6.657, I will know X% of MATLAB

Hint: to convert a number to a string, use num2str
31

Transpose

e The transpose operator turns a column vector into a row vector, and vice

versa
o a=1[12 3 4+i]
o transpose(a)

o a'
o a.'
e The' gives the Hermitian-transpose
o Transposes and conjugates all complex nhumbers

e For vectors of real numbers . and ' give same result
o For transposing a vector, always use .' to be safe

32

Addition and Subtraction

e Addition and subtraction are element-wise
e Sizes must match (unless one is a scalar):

[12 3 32

~11]

+[2 11 —-30 32]

—[14 14

2 21]

33

[12

1
—-10
0

Addition and Subtraction

e C = row + column

Use the transpose to make sizes compatible

)

e C = row. + column
e C = row + column.'’

Can sum up or multiply elements of vector
e s=sum(row);

e p=prod(row);

34

Element-wise functions

e All the functions that work on scalars also work on vectors
o t=[123];
f = exp(t);
is the same as
f = [exp(1) exp(2) exp(3)];
e Ifin doubt, check a function’s help file to see if it handles vectors
element-wise

e Operators (* / *) have two modes of operation

o element-wise
o standard

35

Element-wise functions

e To do element-wise operations, use the dot:. (.*, ./, .")
e BOTH dimensions must match (unless one is scalar)!

a=[1 2 3]:b=[4:2:1];
a.xb , a./b , a.?b - all errors

a.xb.', a./b.’, a.*(b.’) - all valid

36

Operators

e Multiplication can be done in a standard way or element-wise

e Standard multiplication (*) is matrix product
© Remember from linear algebra: inner dimensions must MATCH!!

e Standard exponentiation (") can only be done on square matrices or scalars

e Left and right division (/\) is same as multiplying by inverse
o Our recommendation: for now, just multiply by inverse (more on this later)

4
[1 2 3]* 2 =11
1
Ix3*3x1=1x1

IR F

Must be square to do powers

37

3
6
9

3x3

6 9
12 18
18 27

Exercise: Vector Operations

Calculate how many seconds elapsed since start of class

In helloWorld.m, make variables called secPerMin, secPerHour, secPerDay,
secPerMonth (assume 30.5 days per month), and secPerYear (12 months in
year), which have the number of seconds in each time period

Assemble a row vector called secondConversion that has elements in this
order: secPerYear, secPerMonth, secPerDay, secPerHour, secPerMin, 1
Make a currentTime vector by using clock

Compute elapsedTime by subtracting currentTime from start

Compute t (the elapsed time in seconds) by taking the dot product of
secondConversion and elapsedTime (transpose one of them to get the
dimensions right) 3

Exercise: Vector Operations

Display the current state of your knowledge

e Calculate currentKnowledge using the same relationship as before, and the t
we just calculated:

k=1-e""

e Display the following text:
At this time, | know X% of MATLAB

39

Automatic Initialization

e Initialize a vector of ones, zeros, or random numbers
» o=ones(1,10)
> Row vector with 10 elements, all 1
» z=zeros (23,1)
> Column vector with 23 elements, all O
» r=rand(1l,45)
> Row vector with 45 elements (uniform (0,1))
» n=nan(1l,69)

> Row vector of NaNs (representing uninitialized
variables)

40

Automatic Initialization

e To initialize a linear vector of values use linspace
» a=linspace(0,10,5)
> Starts at 0, ends at 10 (inclusive), 5 values

e (Can also use colon operator (:)
» b=0:2:10
> Starts at 0, increments by 2, and ends at or before 10
> Increment can be decimal or negative
» c=1:5
> If increment is not specified, default is 1

e To initialize logarithmically spaced values use logspace
> Similar to linspace, but see help

Calculate your learning trajectory

e In helloWorld.m, make a linear time vector tvec that has
10,000 samples between 0 and endO£fClass

e (Calculate the value of your knowledge
(call it knowledgeVec) at each of these time points
using the same equation as before:

k=1-e""

42

e MATLAB indexing starts with 1, not O

> We will not respond to any emails
where this is the problem.

e a(n) returns the nt" element

/L1359

a(1) a(2) a(3) a(4)

e The index argument can be a vector. In this case,
each element is looked up individually, and returned
as a vector of the same size as the index vector.

» x=[12 13 5 8];

43

Matrix Indexing

e Matrices can be indexed in two ways
> using subscripts (row and column)
> using linear indices (as if matrix is a vector)

e Matrix indexing: subscripts or linear indices

— N\

b<1,1)—’[14 33} = b(1,2) b(1)_'[14 33] “~— b(3)
b(2,1) L7 ¥l *Tp(2,2) b(2) L7 8 T @)

e Picking submatrices
» A = rand(5)

44

Advanced Indexing 1

e To select rows or columns of a matrix, use the :

125
&=
-2 13

>

>
» d=c(1,:); d=[12 5];
» e=c(:,2); e=[5;13];

» ¢(2,:)=[3 6], %replaces second row of c

45

e MATLAB contains functions to help you find desired values
» vec = [5 3 1 9 7]

e To get the minimum value and its index (similar for max):
» [minVal,minInd]

min (vec) ;

e To find the indices of specific values or ranges

» ind = find(vec == 9); vec(ind) = 8;
» ind = find(vec > 2 & vec < 6);
> expressions can be very complex, more on this later

> When possible, logical indexing is faster than !
> E.qg., vec(vec == 9) ='8;

When will you know 50% of MATLAB?
e First, find the index where knowledgeVec is closest to 0.5.
Mathematically, what you want is the index where the value of
~ |[knowledgeVec—0.5| is at a minimum (use abs and min)
e Next, use that index to look up the corresponding time
in tVec and name this time halfTime
e Finally, display the string:
Convert halfTime to days by using secPerDay. | will know half of
MATLAB after X days

47

Outline

(5) Basic Plotting
Did everyone sign in?

e Example
» x=linspace(0,4*pi,10) ;

» y=sin (x) ;

e Plot values against their index

» plot(y)
e Usually we want to plot y versus X
» plot(x,y)

[MATLAB makes visualizing data
fun and easy!

49

What does plot do?

» plot generates dots at each (x,y) pair
and then connects the dots with a line

e To make plot of a function look smoother, evaluate at more points
» x=linspace(0,4*pi,1000);
» plot(x,sin(x));

e X and y vectors must be same size or else you’ll get an error
» plot([1 2], [1 2 3])

10 x values:] | [1000 x values: - /" /\

o2}/

of

-0.2 \
\
0.4+ \\ | 0.2
\ 0.4
-0.6 \ .l"
.0.8 % J..-' -0.6
a L 08}
[+ 2 10 12 14

|
0.2

-1

or

Plot the learning trajectory

e In helloWorld.m, open a new figure (use figure)

e Plot knowledge trajectory using tvVec and knowledgeVec
e When plotting, convert tvec to days by using secPerDay

e Zoom in on the plot to verify that
halfTime was calculated correctly

51

End of Lecture 1

(1)
(2)
(3)
(4)
(3)

Getting Started
Scripts

Making Variables
Manipulating Variables

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

53

https://ocw.mit.edu/terms
https://ocw.mit.edu

6.057
Introduction to programming in MATLAB

Lecture 2: Visualization and Programming

Orhan Celiker

IAP 2019

Some things that came up:

e Plotting a straight line
» x = 1:10
» plot(x, 0)

> Not an error, but probably not what you meant

e Use of semicolon — never required if one command per line.
You can also put multiple commands on one line; in this
case, a semicolon is necessary to separate commands:

» x=1:10; y=(x-5)."2; z = x.*y;

Plotting

e Example
» x=linspace(0,4*pi,10);
» y=8in(x);

e Plot values against their index

» plot(y):;
e Usually we want to plot y versus x
» plot(x,Vy):;

What does plot do?

» plot generates dots at each (x,y) pair
and then connects the dots with a line

e To make plot of a function look smoother, evaluate at more points
» x=linspace(0,4*pi,1000);
» plot(x,sin(x));

e X and y vectors must be same size or else you’ll get an error

»

[1 2 3])

> error!!

10 x values:; * /|

os- |
.'l
04 |

[\
02/

-0.2¢
-0.4}
-0.6

-0.8F

1000 x values:

0.2

-0.4-

0.6

-0.8F

02t/

osf |

o4t |

Plot the learning trajectory

e In helloWorld.m, open a new figure (use figure)

e Plot knowledge trajectory using tvec and knowledgeVec
e When plotting, convert tvec to days by using secPerDay

e Zoom in on the plot to verify that
halfTime was calculated correctly

Outline for Lec 2

(1) Functions

User-defined Functions

e Functions look exactly like scripts, but for ONE difference
> Functions must have a function declaration

% C:\MATLAB6p5\work\stats.m
File Edit View Text Debug Breakpoints Web Window Help

D@0 |GAs | B8 BBERAE| sz] =)
1 % stats: computes the average, standard deviation, and range
2 % of a given vector of data
3 | = Help file
4 % [avg,sd,range]=stats (x)
5 % avg — the average ({(arithmetic mean) of x
6 % sd - the standard deviation of x
7 % range - a 2x1 vector containing the min and max values in x
8 % X — a vector of walues
9 function [avg,sd,range]=stats(x}e—— Function declaration
10|-| avg=mean (x); A AN
s sa—sta(x) Outputs Inputs
12|-| range=[min{x); max{x)];

coinToss.m stats.m

stats Ln12 Col24

7

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

User-defined Functions

e Some comments about the function declaration

Inputs

function [x, y, z] = funName(inl, in2)

f

Must have the reserved Function name should
word: function | match m-file name

If more than one output,
must be in brackets

o No need for return: MATLAB 'returns' the variables whose
names match those in the function declaration (though, you
can use return to break and go back to invoking function)

o Variable scope: Any variable created within the function but
not returned disappears after the function stops running
(They're called “local variables”)

o We're familiar with
» zZeros
» size
» length
» sum

e Look at the help file for size by typing

» help size

e The help file describes several ways to invoke the function
> D = SIZE(X)
> [M,N] = SIZE(X)
> [M1,M2,M3,...,MN] = SIZE(X)
> M = SIZE(X,DIM)

e MATLAB functions are generally overloaded
> Can take a variable number of inputs
> Can return a variable number of outputs

e What would the following commands return:
» a=zeros(2,4,8); %n-dimensional matrices are OK
» D=size(a)
» [m,n]=size(a)
» [x,y,z]l=size(a)

» m2=size(a,2)

e You can overload your own functions by having variable
number of input and output arguments (see varargin,
nargin, varargout, nargout)

10

Functions: Exercise

Write a function with the following declaration:
function plotSin(£f1l)

In the function, plot a sine wave with frequency f1, on the
interval [0,2m]: sin(fx)

To get good sampling, use 16 points per period.

o_a[I
0.4 1
02k JJ' \ 1
o \ _
! |
J g |
\\/
1 2 3 4 5 6 7

/

I S R S
= m

(2) Flow Control

e MATLAB uses mostly standard relational operators

> equal ==
> not equal ~=
> greater than >
> less than <
> (greater or equal >=
> less or equal <=
e Logical operators elementwise short-circuit (scalars)
> And & &&
> Or | ||
> Not ~
> Xor xXor
> All true all
> Any true any

e Boolean values: zero is false, nonzero is true
e See for a detailed list of operators
13

14

e Basic flow-control, common to all languages
e MATLAB syntax is somewhat unique

IF ELSE ELSEIF
if cond if cond if cond1

commands commandsl commandsl

end else elseif cond2
commands?2 commands?2

5 \ end else
Sty
en

e No need for parentheses: command blocks are between
reserved words

e Lots of elseif’s? consider using switch

loops: use for a known number of iterations

e MATLAB syntax:
Loop variable

/

/
forn=1:100

commands \
end

Command block

e The loop variable
> Is defined as a vector
> Is a scalar within the command block

> Does not have to have consecutive values (but it's usually
cleaner if they're consecutive)

e The command block
> Anything between the line and the

15

e The while is like a more general for loop:
> No need to know number of iterations

while cond
commands
end

The command block will execute while the conditional
expression is true

e Beware of infinite loops! CTRL+C?!
e You can use break to exit a loop

16

Exercise: Conditionals

Modify your plotsin (£1) function to take two inputs:
plotSin (£1, £2)

If the number of input arguments is 1, execute the plot command
you wrote before. Otherwise, display the line 'Two inputs were
given'

Hint: the number of input arguments is stored in the built-in
variable nargin

17

(3) Line Plots

Can change the line color, marker style, and line style by
adding a string argument

» plot(x,y,'k.-");

color marker line-style

Can plot without connecting the dots by omitting line style
argument

» plot(x,y,’.")

Look at for a full list of colors, markers, and line
styles

19

Playing with the Plot

to select lines
and delete or

change
properUe§<:::

} Figure 2
‘File Edit View Insert Tools Desktop Window Help

DeE&/[MMeaa®ms € 08|lsO

10

=]}

N

T T T T \. : ;
to slide the plot),
to zoom in/out 3round /

7

i

Cut

I/ Copy

o l/ Delete
Color...
b ' Line Width »
<o
2r Marker b dash
v Marker Size » dot
1 15 2 25 3 35 4| properties. .. dash-dot
Show M-code 1 e

to see all plot
tools at once

20

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Line and Marker Options

Everything on a line can be customized

» plot(x,y,'s--','LineWidth',2,...
"Color', [1 0 O],
'"MarkerEdgeColor', 'k', ...
'"MarkerFaceColor','g',
'"MarkerSize',10)

You can set colors by using

a vector of [R G B] values or 08
a predefined color character 6L
like 'g’, 'k', etc. ol

0.2+

See doc line_props for a full list of |
properties that can be specified o

04}

-0.6F

21 0.8
4

e We have already seen the plot function
» X=-pi:pi/100:pi;
» y=cos(4*x) .*sin(10*x) .*exp(-abs(x));
» plot(x,y,'k-");

e The same syntax applies for semilog and loglog plots

» semilogx(x,y,'k'"); 10°

» semilogy(y,'r.-"');
» loglog(x,vy):;

10"}

1 030 L

e For example:
» x=0:100;
» semilogy(x,exp(x),'k.-");

1010 L

10°

22

3D Line Plots

e We can plot in 3 dimensions just as easily as in 2D
» time=0:0.001:4*pi;
» x=sin(time) ;
» y=cos (time) ;
» z=time;
» plot3(x,y,z,'k', 'LineWidth', 2);
» zlabel ('Time') ;

23

3D Line Plots

e We can plot in 3 dimensions just as easily as in 2D
» time=0:0.001:4*pi;
» X=sin(time) ;
» y=cos (time) ;
» z=time;
» plot3(x,y,z,'k','LineWidth', 2);
» zlabel ('Time') ;
e Use tools on figure to rotate it
e (Can set limits on all 3 axes
» x1lim, ylim, zlim 5

05

24

05

~ 05

~ o5

Built-in axis modes (see doc axis for more modes)

» axlis square
> makes the current axis look like a square box
» axis tight
> fits axes to data
» axis equal
> makes x and y scales the same
» axis xy
> puts the origin in the lower left corner (default for plots)
» axis 1ij
> puts the origin in the upper left corner (default for
matrices/images)

25

Multiple Plots in one Figure

e To have multiple axes in one figure
» subplot(2,3,1)

> makes a figure with 2 rows and 3 columns of axes, and activates
the first axis for plotting

> each axis can have labels, a legend, and a title
» subplot(2,3,4:6)
> activates a range of axes and fuses them into one

e To close existing figures

» close([1 3]1)
> closes figures 1 and 3

» close all
> closes all figures (useful in scripts)

26

e Figures can be pasted into other apps (word, ppt, etc)
e Edit— copy options— figure copy template
> Change font sizes, line properties; presets for word and ppt
e Edit— copy figure to copy figure
e Paste into document of interest

. ; il
_ Figure (=]
| File Edit View Insert Tools Desktop Window Help -) Preferences
Ded& b RAN® € 08 =0
Figure Copy Template Preferences
0.8 Settings for: [PowerPoim] [Res‘tore Defauﬂs] &
Text
06}
[[] change font size
04r
[] Black and white
02 [Bold
ot Lines
B Figure Copy Template [custom wicth:
02t [[] change style
041
Uicontrols and axes
e Show uicontrols
' |:| Keep axes limits and tick spacing
08 1 ’ Apply to Figure ” Restore Figure] Y
-4 3 2 1 0 1 2 3
27 [OK] [Cancel] ’ Apply] [Help]

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Saving Figures

e Figures can be saved in many formats. The common ones
are:

. Figure 1

v

Save As

Save in: I@WOfk Zl = £5 v

.fig preserves all Shelper SPFLab :
information —HH_files ©PFLab12
DIntroNumSim ©Phys Found '

S Models of the Neuron ©QuantPhys1

L w_|

? ‘\
— | &
hgQame: [unt'rlled fig Save 3
[CET] |
Save as tydes [MATLAB Figure (~fig) Cancel m -
mATLAB Figure (" fig
e~

l Adobe llustrator file {*.ai)
Bitmap file (*.bmp)
EPSfile {"eps) -]
Enhanced metafile {".emf)

JPEG image ("jpa) L
MATLAB Figure (" fig)

L | Paintbrush 24-bit file {*.pcx) _
Portable Bitmap file (*pbm)

Portable Document Fonn_at {*.pdf) b

.bmp uncompressed
image

.eps high-quality
scaleable format —

.pdf compressed
image

28

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

e Modify the plot command in your plotSin function to use
squares as markers and a dashed red line of thickness 2
as the line. Set the marker face color to be black
(properties are LineWidth, MarkerFaceColor)

o If there are 2 inputs, open a new figure with 2 axes, one on
top of the other (not side by side), and plot both
frequencies (subplot)

plotSin(6) plotSin(1l,2)

Y
L e 8 " J 29 a L L - L L L - L J
¥ 0 1 2 3 4 5 8 ¥

(4) Image/Surface Plots

Visualizing matrices

e Any matrix can be visualized as an image

» mat=reshape(1:10000,100,100) ;
» imagesc (mat) ;

» colorbar

imagesc automatically scales the values to span the entire
colormap

Can set limits for the color axis (analogous to x1im, ylim)
» caxis ([3000 7000])

31

Colormaps

e You can change the colormap:

» imagesc (mat) : L
> default map is parula . -
» colormap (gray) 5 %
» colormap (cool) . L
» colormap (hot (256)) N .

e See help hot for a list ,
256) -
e (Can define custom color-map |

» map=zeros (256,3) ; -
» map(:,2)=(0:255) /255;

» colormap (map) ;

[l
0 20 30 40 50 60 70 80 90 100

1 1 1 4
10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Surface Plots

It is more common to visualize surfaces in 3D

Example: f(x,y)=sin(x)cos(y)

xe[—ﬂ,ﬂ];ye[—ﬂ,ﬂ]

surf puts vertices at specified points in space x,y,z, and
connects all the vertices to make a surface

The vertices can be denoted by matrices X,Y,Z

How can we make these matrices
> built-in function: meshgrid

33

surf

Make the x and y vectors
» X=-pi:0.1l:pi;
» y=-pi:0.1l:pi;

Use meshgrid to make matrices
» [X,Y]=meshgrid(x,y);

To get function values,
evaluate the matrices

» Z =sin(X) .*cos (Y) ; L

Plot the surface
» surf(X,Y,Z)
» surf(x,y,Z2);

0.5 -

*Try typing surf(membrane)

surf Options

faceted

e See help surf for more options
e There are three types of surface shading "

» shading faceted
» shading flat

» shading interp
e You can also change the colormap
» colormap (gray)

interp

contour

e You can make surfaces two-dimensional by usmg contour

» contour(X,Y,Z,

'LineWidth',

> takes same arguments as surf
> color indicates height
> can modify linestyle properties

> can set colormap
» hold on
» mesh(X,Y,Z)

36

2)7

=]
T

0
=
T

Modify plotsin to do the following:
If two inputs are given, evaluate the following function:
Z =sin(fix)+sin(f,»)
y should be just like x, but using f2. (use meshgrid to get
the X and Y matrices)

In the top axis of your subplot, display an image of the Z
matrix. Display the colorbar and use a hot colormap. Set
the axis to xy (imagesc, colormap, colorbar, axis)

In the bottom axis of the subplot, plot the 3-D surface of Z
(surf)

37

D Plots

cL

Exercise

igure

is fl

4) generates th

in (3,

in

plotS

Specialized Plotting Functions

MATLAB has a lot of specialized plotting functions
polar-to make polar plots

» polar(0:0.01:2*pi,cos((0:0.01:2*pi) *2))
bar-to make bar graphs

» bar(1:10,rand(1,10)) ;

quiver-to add velocity vectors to a plot

» [X,Y] =meshgrid(1:10,1:10);

» quiver (X,Y,rand(10) ,rand(10)) ;
stairs-plot piecewise constant functions

» stairs(1:10,rand(1,10));

fill-draws and fills a polygon with specified vertices
» £i11([0 1 0.5],[0 0 11,'r');

see help on these functions for syntax

doc specgraph - for a complete list

39

(5) Efficient codes

is a very important function
> Returns indices of nonzero values
> Can simplify code and help avoid loops

e Basic syntax: index=find(cond)
» x=rand(1,100);
» inds = find(x>0.4 & x<0.6) ;

inds contains the indices at which x has values between 0.4
and 0.6. This is what happens:
x>0.4 returns a vector with 1 where true and 0 where false
Xx<0.6 returns a similar vector
& combines the two vectors using logical operator
find returns the indices of the 1's

41

e Given x= sin(linspace(0,10*pi,100)), how many of the

entries are positive?

count=0;
for n=1:length(x)
if x(n)>0
count=count+1;
end
end

e Avoid loops!

count=Ilength(find(x>0));
Is there a better way?!

length(x) | Loop time | Find time
100 0.01 0
10,000 0.1 0
100,000 0.22 0
1,000,000 1.5 0.04

e Built-in functions will make it faster to write and execute

42

Avoid loops
> This is referred to as vectorization

Vectorized code is more efficient for MATLAB
Use indexing and matrix operations to avoid loops
For instance, to add every two consecutive terms:

43

Avoid loops
> This is referred to as vectorization

Vectorized code is more efficient for MATLAB

Use indexing and matrix operations to avoid loops
For instance, to add every two consecutive terms:
» a=rand(1,100);

» b=zeros(1,100);

» for n=1:100

» if n==

» b(n)=a(n);

» else

» b(n)=a(n-1)+a(n);
» end

» end

> Slow and complicated «

Avoid loops
> This is referred to as vectorization
Vectorized code is more efficient for MATLAB
Use indexing and matrix operations to avoid loops
For instance, to add every two consecutive terms:

» a=rand(1,100); » a=rand(1,100);

» b=zeros(1,100); » b=[0 a(l:end-1)]+a;
» for n=1:100 > Efficient and clean. Can
N if neo also do this using conv
» b(n)=a(n);

» else

» b(n)=a(n-1)+a(n);

» end

» end

> Slow and complicated

Avoid variables growing inside a loop
Re-allocation of memory is time consuming

Preallocate the required memory by initializing the array to
a default value

For example:
» for n=1:100

» res = % Very complex calculation %
» a(n) = res;
» end

> Variable a needs to be resized at every loop iteration

46

Avoid variables growing inside a loop
Re-allocation of memory is time consuming

Preallocate the required memory by initializing the array to
a default value

For example:

» a = zeros(1l, 100);

» for n=1:100

» res = % Very complex calculation %
» a(n) = res;

» end

> Variable a is only assigned new values. No new memory is
allocated

47

(6) Debugging

e When debugging functions, use disp to print messages
» disp('starting loop')
» disp('loop is over')
> disp prints the given string to the command window

e It's also helpful to show variable values

» disp(['loop iteration ' num2str(n)l]):;
> Sometimes it's easier to just remove some semicolons

49

Debugging

e To use the debugger, set breakpoints

Click on — next to line numbers in m-files

Each red dot that appears is a breakpoint

Run the program

The program pauses when it reaches a breakpoint
Use the command window to probe variables

Use the debugging buttons to control debugger

YYYVYVY

% C:\MATLAB6p5\work\coinToss.m

File Edit View Text Debug Breakpoints Web Window Help

D D,., ,' . o R« ; @M/f@? @%Eﬂ@@ Stack: L?ETT&%‘*,XJ @
11 * Toggle Clear all \Stop execution; exit
2 % bﬁ_gépﬁ Beihfllbs“reaaﬁﬁdlﬁﬁgn and displays the output
3 '5 Step to next
4/-| if rand < 0.5 % if random number is less than 0.5 say heads
5/e e—rt=prHER— | WO breakpoints
6|~ 1T greater than 0.5, say tails
7|®] o b EL= o a1, L B8 = L P .
. ~_Where the program is now

50

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

e It can be useful to know how long your code takes to run
> To predict how long a loop will take
> To pinpoint inefficient code

e You can time operations using tic/

» tic

» Mysteryl;

» a=toc;

» Mystery2;

» b=toc;
> tic resets the timer
> Each toc returns the current value in seconds
> Can have multiple tocs per tic

51

Performance Measures

e Example: Sparse matrices
» A=zeros (10000); A(1,3)=10; A(21,5)=pi;
» B=sparse (A) ;
» inv(A); % what happens?

%
» inv(B); % what about now?

o [If system is sparse, can lead to large memory/time savings
» A=zeros (1000); A(1,3)=10; A(21,5)=pi;
» B=sparse (A) ;
» C=rand (1000,1)
» tic; A\C; toc; slow!

%
» tie; B\C; toc; % much faster!

we

52

Performance Measures

e For more complicated programs, use the profiler
» profile on
> Turns on the profiler. Follow this with function calls

» profile viewer
> Displays gui with stats on how long each subfunction took

Profile Summary
Generated 04-Jan-2006 09:53:26
Number of files called: 19

Filename | File Type Calls | Total Time" Time Plot
newplot M-function 1 0.802 s |
gef M-function 1 0.460 s ——
newplot/ObserveAxesiextPlot | M-subfunction | 1 0.291 s —
...matlab/graphics/private/clo M-function 1 0.251 s —
allchild M-function 1 0.100 s a
setdiff M-function 1 0.050 s |

53

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

End of Lecture 2

(1)
(2)
(3)
(4)
(3)
(6)

Functions

Flow Control

Line Plots
Image/Surface Plots
Efficient codes
Debugging

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

6.057
Introduction to MATLAB

Lecture 3 : Solving Equations, Curve Fitting,
and Numerical Techniques

Orhan Celiker

IAP 2019

(1) Linear Algebra

Given a system of linear equations
> X+2y-3z=5
> -3X-y+z=-8
> X-y+z=0
Construct matrices so the system is described by Ax=b
» A=[1 2 -3;-3 -1 1;1 -1 17;
» b=[5;-8,;0];

MATLAB makes linear
algebra fun!

And solve with a single line of code!
» x=A\b;
> X is a 3x1 vector containing the values of x, y, and z

The \ will work with square or rectangular systems.

Gives least squares solution for rectangular systems. Solution
depends on whether the system is over or underdetermined.

Worked Example: Linear Algebra

e Solve the following systems of equations:

> System 1:
x+4y=34
—3x+y=2

> System 2:
2x-2y =4
—x+y=3
3x+4y=2

»

»

»

»

»

»

»

»

»

»

A=[1 4;-3 1];
b=[34;2];
rank (A)
x=inv (A) *b;
x=A\b;

A=[2 -2;-1 1;3 4];
b=[4;3;2];

rank (A)

> rectangular matrix

x=A\Db;

> gives least squares solution
error=abs (A*x1-b)

Given a matrix
» mat=[1 2 -3;-3 -1 1;1 -1 1];
Calculate the rank of a matrix
» r=rank (mat) ;
> the number of linearly independent rows or columns
Calculate the determinant
» d=det (mat) ;
> mat must be square; matrix invertible if det nonzero
Get the matrix inverse
» E=inv (mat) ;

> if an equation is of the form A*x=b with A a square matrix,
x=A\b Is (mostly) the same as x=inv(A)*b

Get the condition number
» c=cond (mat); (or its reciprocal: ¢ = rcond(mat) ;)

> if condition number is large, when solving A*x=b,
small errors in b can lead to large errors in x (optimal c==1)

e MATLAB has many built-in matrix decomposition methods

e The most common ones are
» [V,D]=eig(X)
> Eigenvalue decomposition
» [U,S,V]=svd (X)
> Singular value decomposition
» [Q,R]=gr (X)
> QR decomposition
» [L,U]=1lu (X)
> LU decomposition
» R=chol (X)
> Cholesky decomposition (R must be positive definite)

Exercise: Fitting Polynomials

e Find the best second-order polynomial that fits the points:
(_110)1 (01_1)1 (213)

a(=1)> +b(=1)+c=0
a(0)> +b(0)+c=—1
a(2)’ +b(2)+c=3

(2) Polynomials

Many functions can be well described by a high-order
polynomial

MATLAB represents a polynomials by a vector of coefficients
> if vector P describes a polynomial

ax3+bx?+cx+d
A
P(1) P(2) P(3) P(4)

P=[1 0 -2] represents the polynomial x?-2

P=[2 0 0 0] represents the polynomial 2x>

P is a vector of length N+1 describing an N-th order polynomial
To get the roots of a polynomial

» r=roots (P)
> ris a vector of length N

Can also get the polynomial from the roots
» P=poly(r)
> ris a vector length N

To evaluate a polynomial at a point
» yO=polyval (P,x0)
> X0 is a single value; y0 is a single value

To evaluate a polynomial at many points
» y=polyval (P, x)
> X is a vector; y is a vector of the same size
10

Polynomial Fitting

e MATLAB makes it very easy to fit polynomials to data

e Given data vectors X=[-1 0 2] and Y=[0 -1 3]
» p2=polyfit(X,Y,2);
> finds the best (least-squares sense) second-order
polynomial that fits the points (-1,0),(0,-1), and (2,3)
> see help polyfit for more information
plot(X,Y,’o’, ‘MarkerSize’, 10);
» hold on;
» x = -3:.01:3;
» plot(x,polyval (p2,x), ‘r--');

)

v

11

Exercise: Polynomial Fitting

Evaluate y = x* for x=-4:0.1:4.

Add random noise to these samples. Use randn. Plot the
noisy signal with . markers

Fit a 2"d degree polynomial to the noisy data

Plot the fitted polynomial on the same plot, using the same
X values and a red line

12

(3) Optimization

Nonlinear Root Finding

e Many real-world problems require us to solve f(x)=0
e (Can use fzero to calculate roots for any arbitrary function

e fzero needs a function passed to it.

e We will see this more and more as we delve into solving
equations.

e Make a separate function file
» x=fzero('myfun',1l)

» x=fzero (@myfun, 1) % C:\MATLAB6p5\work\myfun.m Q@@
- {e Edit View Text Debug Breakpoints Web Window Help
> 1 S_peCIﬂes a - CEBERo o |([S M F | BX|EEE R stack:f:
point close to where TS

YOU th|nk the I‘OOt |S 2|-| y=cos(exp({x))+x."2-1;

coinToss.m stats.m temp.m getScores.m huggyCode.m myfun.m
myfun Ln2 Col 21

14
MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Minimizing a Function

fminbnd: minimizing a function over a bounded interval
» x=fminbnd('myfun',-1,2);
> myfun takes a scalar input and returns a scalar output
> myfun(x) will be the minimum of myfun for -1<x < 2

fminsearch: unconstrained interval
» x=fminsearch('myfun', .5)
> finds the local minimum of myfun starting at x=0.5

Maximize g(x) by minimizing f(x)=-g(x)

Solutions may be local!

15

e You do not have to make a separate function file
» x=fzero (@myfun,1)
> What if myfun is really simple?

e Instead, you can make an anonymous function
» x=fzero (@ (x) (cos(exp(x))+x.%2-1), 1);
input function to evaluate
» x=fminbnd (@ (x) (cos(exp(x))+x.%2-1),-1,2);
e Can also store the function handle

» func=Q@(x) (cos(exp(x))+x.%2-1);
» func(1:10) ;

16

If you are familiar with optimization methods, use the
optimization toolbox

Useful for larger, more structured optimization problems

Sample functions (see help for more info)
» linprog

> linear programming using interior point methods
» quadprog

> quadratic programming solver

» fmincon
> constrained nonlinear optimization

17

Exercise: Min-Finding

b

Find the minimum of the function f(X)=COS(4x)sin(10x)e"
over the range -1 to 1. Use £minbnd.

Plot the function on this range to check that this is the
minimum.

18

Digression: Numerical Issues

e Many techniques in this lecture use floating point numbers
e This is an approximation!

e Examples:
» sin(pi) = ?
» sin(2 * pi) = ?
» sin(10el6 * pi) = ?
> Both sin and pi are approximations!

» A = (10el3)*ones(10) + rand(10)

> A is nearly singular, poorly conditioned (see cond (2))

» inv(A)*A = ?

19

MATLAB knows no fear!

Give it a function, it optimizes / differentiates / integrates
> That's great! It's so powerful!

Numerical techniques are powerful but not magic

Beware of overtrusting the solution!
> You will get an answer, but it may not be what you want

Analytical forms may give more intuition
> Symbolic Math Toolbox

20

(4) Differentiation/Integration

Numerical Differentiation

MATLAB can 'differentiate' numericallysl

» x=0:0.01:2*pi;/u-6
» y=sin(x); il
» dydx=diff (y)./diff (x) ; '

> diff computes the first dlfm_

-0.4r

Can also operate on matrices il
» mat=[1 3 5;4 8 6], 0.8t 1
» dm=diff (mat,1,2) L o o B b

> first difference of mat along the 2" dlmensmn dm=[2 2;4 -2]
> The opposite of diff is the cumulative sum cumsum

2D gradient
» [dx,dy]l=gradient (mat) ;

Higher derivatives / complicated problems: Fit spline (see help)

22

e MATLAB contains common integration methods

e Adaptive Simpson's quadrature (input is a function)
» g=quad('myFun',0,10)
> q is the integral of the function myFun from O to 10
» g2=quad (@ (x) sin(x).*x,0,pi)
> (2 is the integral of sin (x) . *x from 0 to pi
e Trapezoidal rule (input is a vector)
» x=0:0.01:p1;
» z=trapz(x,sin(x))
> z is the integral of sin(x) from 0 to pi
» z2=trapz (x,sqrt(exp(x)) ./x)
> z2 is the integral of \/e_x/x from O to pi

23

(5) Differential Equations

ODE Solvers: Method

e Given a differential equation, the solution can be found by
integration:

>

> Evaluate the derivative at a point and approximate by straight line
> Errors accumulate!
> Variable timestep can decrease the number of iterations

25

e MATLAB contains implementations of common ODE solvers

e Using the correct ODE solver can save you lots of time and
give more accurate results
» ode23

> Low-order solver. Use when integrating over small intervals
or when accuracy is less important than speed

» oded5

> High order (Runge-Kutta) solver. High accuracy and
reasonable speed. Most commonly used.

» odelbs

> Stiff ODE solver (Gear's algorithm), use when the diff eq's
have time constants that vary by orders of magnitude

26

e To use standard options and variable time step
» [t,y]=0ded5('myODE"', [0,10],[1,0])

ODE integrator: \ Initial conditions

23,45, 15s . '
ODE function Tlme range

e Inputs:

> ODE function name (or anonymous function). This function
should take inputs (t,y), and returns dy/dt

> Time interval: 2-element vector with initial and final time

> Initial conditions: column vector with an initial condition for
each ODE. This is the first input to the ODE function

> Make sure all inputs are in the same (variable) order
e Qutputs:

> t contains the time points

> Yy contains the corresponding values of the variables

27

ODE Function

e The ODE function must return the value of the derivative at
a given time and function value

e Example: chemical reaction 10

> Two equations N

dA A B
T ——104+50B N~ —

dt 50

d—B=10A—SOB

dt

% C:\MATLAB6p5\work\chem.m

File Edit View Text Debug Breakpoints Web Window Help

> ODE file: D | sE2Ro> | S AF | BB ERERE Stadk: |
\ 1 % chem: chemical reaction ode function
-y has [A,B] 2 function dydt=chem(t, v)
- det has 3|-| dydt=zeros(2,1);
4-| dydt(1l)=-10*v(1)+50*v(2);

[dA/dt,dB/dt] 57| dydt(2)=10*y(1)-50*y(2);

28 < stats.m temp.m getScores.m buggyCode.m myfun.m chem.m
chem Lhs Col 25

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

ODE Function: viewing results

e To solve and plot the ODEs on the previous slide:

» [t,y]=0ded45('chem', [0 0.5],[0 17)
> assumes that only chemical B exists initially

» plot(t,y(:,1),'k', 'LineWidth',1.5);
» hold on;

» plot(t,y(:,2),'r', 'LineWidth',1.5);
» legend('A','B');

» xlabel ('Time (s)');

» ylabel ('Amount of chemical (g)');

» title('Chem reaction');

29

ODE Function: viewing results

e The code on the previous slide produces this figure

1

0.9 [— B |-

08

0.7

0.6

0.5F

04F

0.3

0.2

0.1

0 L L 1 | | 1 | | |
0 005 01 015 02 025 03 035 04 045 05

30

31

Higher Order Equations

Must make into a system of first-order equations to use

ODE solvers
Nonlinear is OK!

* C:\MATLAB6p5\work\pendulum.m

=]}

File Edit View Text Debug Breakpoints Web Window Help
Pendulum example: D@ B0~ | & Af | 8| 50 EIRE | ey
1 % pendulum
§+£3fﬂ(ﬂ)=ﬂ 2 function dxdt = pendulum{t, x)
L 3l L= 1;
. g 4-| theta = x{1);
H=——3iﬂ(ﬂ) 5~ gamma = x{2);
L ///
let =y 7 / dtheta = gamma;
P 8 -9 dgamma = -(9.8/L)*sin{theta);
'=——3in(ﬂ) 9
L 10|-| dxdt = zeros(2,1);
H/ 11
¥ =) 12;' dxdt {1)=dtheta;
:p'/ /1’5"dxdt(2)=dgamma;
r /,///
dx
—_— = E ’/ < temp.m getScores.m huggyCode.m myfun.m chem.m pendulum.m
dt ?'/ ‘pendulum Ln13 cCaol5

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Plotting the Output

e We can solve for the position and velocity of the pendulum:
» [t,x]=0ded5('pendulum', [0 10],[0.9*pi 0]) ;
> assume pendulum is almost horizontal

)

v

» hold on;
)

v

plot(t,x(:,1));

plot(t,x(:,2),'r");

» legend('Position', 'Velocity') ;

8

6+

Position in terms of al

angle (rad) —

i
32 0 1

Velocity (m/s)

Plotting the Output

e Or we can plotin
» plot(x(:,1),

the phase plane:
x(:,2));

» xlabel ('Position');

» yLabel ('Velocity') ;
e The phase plane is just a plot of one variable versus the

other:

8

6
4t
2k

0_

Velocity=0 when 4

theta is the greatest &

-8

7

ke i 1 L 1
-3 -2 -1 0 1 2 3

Velocity is greatest
when theta=0

e MATLAB's ODE solvers use a variable timestep
e Sometimes a fixed timestep is desirable

»

[t,y]=0de4d45('chem',[0:0.001:0.5],[0 1]);
> Specify timestep by giving a vector of (increasing) times
> The function value will be returned at the specified points

e You can customize the error tolerances using
» options=odeset('RelTol’',le-6, 'AbsTol',le-10) ;

»

[t,y]l]=0ded45('chem', [0 0.5],[0 1],options);

> This guarantees that the error at each step is less than
RelTol times the value at that step, and less than AbsTol

> Decreasing error tolerance can considerably slow the solver
> See for a list of options you can customize

34

Exercise: ODE

e Use ode45 to solve for y(t) on the range t=[0 10], with
initial condition y(0)=10 and dy/dt=—-ty/10
e Plot the result.

35

36

Use ode45 to solve for ¥(f) on the range t=[0 10], with
initial condition y(0)=10 and dy/dt=—ty/10
Plot the result.

Make the following function

» function dydt=odefun(t,y)

» dydt=-t*y/10;

Integrate the ODE function and plot the result
» [t,y]=0ded5 (‘odefun’, [0 10],10);

Alternatively, use an anonymous function
» [t,yl=oded5(@(t,y) —-t*y/10,[0 10],10);

Plot the result
» plot(t,y) ;xlabel('Time') ;ylabel('y(t)"');

Exercise: ODE

The integrated function looks like this:

Function y(t), integrated by oded5
T T T T

10

yit)
o

37

10

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

6.057
Introduction to programming in MATLAB

Lecture 4: Advanced Methods

Orhan Celiker

IAP 2019

Note about functions in files

e Whenever possible, write your functions in their own files

> e.g. myfun should be in a file by itself, and the file should
be called myfun.m*

> If you include more than one function per file, only the
first function is accessible in other scripts

> More info here:

https://www.mathworks.com/help/matlab/matlab prog/c
reate-functions-in-files.html

* If filename and function name differs, MATLAB recognizes your
function by its filename**, not the function name

** yes, this is very confusing :(

https://www.mathworks.com/help/matlab/matlab_prog/create-functions-in-files.html

(1) Probability and Statistics

e Whenever analyzing data, you have to compute statistics
» scores = 100*rand(1,100); % random data

e Built-in functions
> mean, median, mode

e To group data into a histogram
» hist(scores,5:10:95) ;
> makes a histogram with bins centered at 5, 15, 25...95
» hist (scores, 20) ;
> makes a histogram with 20 bins
» N=histc(scores,0:10:100) ;

> returns the number of occurrences between the specified
bin edges 0 to <10, 10 to <20...90 to <100. you can plot
these manually:

» bar(0:10:100,N, 'r")

e Many probabilistic processes rely on random numbers

e MATLAB contains the common distributions built in

» rand
> draws from the uniform distribution from 0 to 1

» randn
> draws from the standard normal distribution (Gaussian)

» random
> can give random numbers from many more distributions
> see help random

e You can also seed the random number generators

» rand('state',0); rand(l);, rand(1l);
rand('state',0); rand(l); % same random number

5

Changing Mean and Variance

e We can alter the given distributions
» y=rand(1,100)*10+5;
> gives 100 uniformly distributed numbers between 5 and 15
» y=floor (rand(1,100)*10+6) ;

> gives 100 uniformly distributed integers between 6 and 15.
floor or ceil is better to use here than round

> Yyou can also use randi ([6,15],1,100)

» y=randn(1,1000)
» y2=y*5+8

o 8 Bl8 8 ¥ 8 oy 8

> increases std to 5 and makes the mean 8

g e

s
8

Vg/e will simulate Brownian motion in 1 dimension. Call the script
‘brwn’

Make a 10,001 element vector of zeros

Write a loop to keep track of the particle’s position at each time

Assume middle of the vector is position 0. To get the new
position, pick a random number, and if it's <0.5, go left; if it's
>O.5,dgo right. Keep count of how many times each position is
visited.

Plot a 50 bin histogram of the positions.

(2) Data Structures

e We have used 2D matrices
> Can have n-dimensions (e.g., RGB images)

> Every element must be the same type (ex. integers,
doubles, characters...)

> Matrices are space-efficient and convenient for calculation
> Large matrices with many zeros can be made sparse
— More on this later this lecture

e Sometimes, more complex data structures are more
appropriate
: it's like an array, but elements don't have to be
the same type

: can bundle variable names and values into one
structure

— Like object oriented programming in MATLAB

9

e A cell is just like a matrix, but each field can contain
anything (even other matrices):

3x3 Cell Array

3x3 Matrix
Jlo |h|n :
1.2 [-3 |s5.5 E // 4
7.8 |-1.1|4 |18 —
T
Lie|o

e One cell can contain people's names, ages, and the ages of
their children

e To do the same with matrices, you would need 3 variables
and padding o

To initialize a cell, specify the size
» a=cell (3,10) ;
> a will be a cell with 3 rows and 10 columns

or do it manually, with curly braces {}

» c={'hello world',[1 5 6 2],rand(3,2)};
> cis a cell with 1 row and 3 columns

Each element of a cell can be anything
To access a cell element, use curly braces {}
» a{l,1}=[1 3 4 -10];

» a{2,1}="hello world 2';
» a{l,2}=c{3};

1"

Write a script called sentGen

Make a 2x3 cell, and put three names into the first row,
and adjectives into the second row

Pick two random integers (values 1 to 3)
Display a sentence of the form '[name] is [adjective].’
Run the script a few times

12

Structs allow you to name and bundle relevant variables
> Like C-structs, which are containers with fields

To initialize an empty struct:

» s=struct;
> size(s) will be 1x1

> initialization is optional but is recommended when using large
structs

To add fields

» s.name = ‘Leo’';
» s.age = 18;

» s.childAge = [];

> Fields can be anything: matrix, cell, even struct
> Useful for keeping variables together

For more information, see helpmstruct

To initialize a struct array, give field, values pairs
» ppl=struct('name',{'John', 'Mary',6 'Leo'}, ...
'age',{32,27,18}, 'childAge',{[2,;4]1,1,[1})
> size(ppl)=1x3
> every cell must have the same size
» person=ppl (2);
> person is now a struct with fields name, age, children
> the values of the fields are the second index into each cell

» ppl(3)=s;
> adds struct (fields must match)

» person.name ppl ppI(1) ppI(2) ppI(3)
> returns 'Mary’

» ppl(l) .age

> returns 32 name:—— |'John’

age:——» 32

childAge:—— | [2;4]

e To access 1x1 struct fields, give name of the field
» stu=s.name;
» a=s.age;

> 1x1 structs are useful when passing many variables to a
function. Put them all in a struct, and pass the struct

e To access nx1 struct arrays, use indices
» person=ppl (2) ;
> person is a struct with name, age, and child age
» personName=ppl (2) .name;
> personName is 'Mary'

» a=[ppl.age];
> a is a 1x3 vector of the ages; this may not always work,
the vectors must be able to be concatenated

15

Modify the script sentGen

Create a struct array with a field "name” and a field “adj”
containing the values from the previous cell array

Do not create it from scratch! Use the previously defined
cell array!

Modify the display command to use the struct array
Run the script a few times

16

(3) Images

Manipulate graphics objects using ‘handles’
» L=plot(1:10,rand(1,10)) ;
> gets the handle for the plotted line
» A=gca;
> gets the handle for the current axis
» F=gcf;
> gets the handle for the current figure
To see the current property values, use get
» get (L)
» yVals=get (L, 'YData') ;
To change the properties, use set
» set (A, 'FontName',6 'Arial', 'XScale',b 'log');
» set (L, 'LineWidth',1.5, '"Marker','*"');

Everything you see in a figure is completely customizable
through handles "

Reading/Writing Images

e Images can be imported as a matrix of pixel values
» im=imread('myPic.jpg');
» imshow (im) ;

e Matlab supports almost all image formats
> jpeg, tiff, gif, bmp, png, ...
> see help imread for details (e.g., pixel format and types)

e To write an image, give:
> rgb matrix (0 to 1 doubles, or 0 to 255 uint8)
» imwrite (rand(300,300,3),'tl.jpg"');
> indices and colormap
» imwrite (ceil (rand(200)*256) ,jet(256),'t2.9pg’');
> see help imwrite for more options

19

AT3 1m4 O01.
AT3 1m4 03.
AT3 1m4 05.
AT3 1m4 07.
AT3 1m4 09.

autumn.
.png
cameraman.

cell.
.png
.png
.png
.png
forest.
.png
.png
.png
m83.
.tif
office 1.
office 3.
office 5.

blobs

circles

coins
concordorthophoto
fabric

glass
hestain

liftingbody

moon

onion
pears
pillsetc
rice

testpatl

westconcordorthophoto

tif
tif
tif
tif
tif
tif

tif
tif

tif

tif
jpg
jpg
jpg

-png
-png
-png
-png
shadow.

spine.
.png

tire.
trees.

-png

tif
tif
tif
tif

AT3 1m4 02.
AT3 1m4 04.
AT3 1m4 06.
AT3 1m4 08.
AT3 1m4 10.
.png
board.
canoe.
circbw.
circuit.
.png
eight.
football.

bag

concordaerial

gantrycrane

mri

peppers

pout.
-png
-png
-png
-png
-png
-png

saturn

snowflakes

tape

text

tissue
westconcordaerial

tif
tif
tif
tif
tif

tif
tif
tif
tif

tif
jpg

.png
greens.

kids.

logo.
mandi.
Ltif
office 2.
office 4.
office_6.

paperl.
.png

jpg
tif
tif
tif
jpg
jpg
jpg
tif

tif

20

Load these like you'd load
anything else 1n your
current directory:

>> load(cameraman.tif');

Outline

(4) FileI/O

e Matlab is a great environment for processing data. If you
have a text file with some data:
Jane Jjoe Jjimmy
10 11 12
5 4 2
56 4

e To import data from files on your hard drive, use
importdata
» a=importdata ('textFile.txt');
> a is a struct with data, textdata, and colheaders fields

a -
data: [3x3 double]
textdata: {'jane' 'joe! "Jirmeay' }
colheaders: {'jane' 'joe! "Jimay' }

» xX=a.data;
» names=a.colheaders;

22

With importdata, you can also specify delimiters. For
example, for comma separated values, use:
» a=importdata('filename', ',')
> The second argument tells matlab that the tokens of
interest are separated by commas

importdata is very robust, but sometimes it can have
trouble. To read files with more control, use £scanf (similar
to C/Java), textscan. See for information on how to
use these functions

23

Matlab contains specific functions for reading and writing
Microsoft Excel files

To write a matrix to an Excel file, use xlswrite
» xlswrite ('randomNumbers',rand(10)) ;

» xXlswrite ('randomNumbers',rand(10), ...
'Sheetl', 'C1l1:L20"');
> Sheet name and range optional

You can also write a cell array if you have mixed data:
» C={'hello', 'goodbye';10,-2;-3,4};
» xXlswrite ('randomNumbers',6C, 'mixedData’) ;

See help xIlswrite for more usage options

24

Reading Excel Files

e Reading excel files is equally easy

e To read from an Excel file, use xl1sread

» [num, txt,raw]=xlsread('randomNumbers.xls') ;
> Reads the first sheet
> num contains numbers, txt contains strings,

raw is the entire cell array containing everything

» [num, txt, raw]=xlsread('randomNumbers.xls', ...
'mixedData') ;
> Reads the mixedData sheet

» [num, txt,raw]=xlsread('randomNumbers.xls',6-1) ;

> Opens the file in an Excel window and lets you click on the
data you want!

e See help xlsread for even more fancy options

25

Reading ANY File

e You can read any file as binary data

e To read from a file, use fopen
» fid = fopen(‘'fileName’, ‘r’);

> Returns a handle to a file

» data = fread(fid, 10);

> Reads the next 10 bytes from the file and stores them in
data

» fseek (fid, 5, 0);
> Moves forward 5 bytes from the current position

e See help fopen/fread/fwrite/ftell/fseek for even more
fancy options

26

e Not mandatory — but highly recommended!

e More cool stuff Matlab has to offer

e Some things we can cover:
 Animations
« Build a GUI for your projects!
« Use cool toolboxes

« Interact with hardware (scopes, analyzers, Arduino,
Raspberry PI, Lego Mindstorm...)

« Use Simulink to graphically build complex systems and
simulate

Do image processing
* Plus... No Homework assignment!

27

Comment your code!

help and Google are your best friends -
use them!

Vectorize whenever possible

Matlab is powerful but it is not a substitute
for your own insights

End of Lecture 4

(1) Probability and Statistics
(2) Data Structures

(3) Images

(4) FileI/O

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

Lecture 5: Various functions and toolboxes

Orhan Celiker

IAP 2019

Documentation

Misc. Useful Functions
Graphical User Interfaces
Simulink

Symbolic Toolbox

Image Processing
Hardware Interface

Official Documentation

e http://www.mathworks.com/help/matlab/

‘MﬂthWOI'kS" Products Solutions Academia Support Community Events

D ocume nfCl h on All Examples Functions

= CONTENTS Close s
MATLAB MATLAB
Getting Started with MATLAB The Language of Technical Computing

Language Fundamentals oy : G EE - & . ;
Millions of engineers and scientists worldwide use MATLAB™ to analyze and design the systems and products transforming our world. The

Data Import and Analysis matrix-based MATLAB language is the world's most natural way to express computational mathematics, Built-in graphics make it easy to
Mathematics visualize and gain insights from data. The desktop environment invites experimentation, exploration, and discovery. These MATLAB tools

: and capabilities are all rigorously tested and designed to work together.
Graphics

MATLAE helps you take your ideas beyond the desktop. You can run your analyses on larger data sets, and scale up to clusters and
clouds. MATLAB code can be integrated with other languages, enabling you to deploy algorithms and applications within web, enterprise,
App Building and production systems.

Software Development Tools

Programming

External Language Interfaces Getting Started

Environment and Setings Learn the basics of MATLAB
Simulink
66 Tadika Language Fundamentals

Syntax, array indexing and manipulation, data types, operators
Aerospace Blockset ¥ ¥ it P types, op

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

http://www.mathworks.com/help/matlab/
www.mathworks.com/trademarks
http://www.mathworks.com/help/matlab

The command deal can make variable initialization simpler
» [x, y, z] = deal(zeros (20, 30));

» [a, b, ¢, d] = 5;

» [m, n] = deal(l, 100);

The command eval can execute a string!

» al =1; n=1;

» eval ([‘a’ num2str(n) ' = 5;'1]);

» disp([‘'al is now ' num2str(al)])

The command repmat can create replicas easily
» A = repmat([1 2;3 4], 2, 2);

Execute Perl scripts using the command perl

» perl (‘myPerlFile.pl’);

https://perl(�myPerlFile.pl

Miscellaneous Matlab (2)

Use regexp for powerful regular expression operations
» str = ‘The staff email is example(@example.edu’;
» pat = " ([\w-.1)+@ ([\w-.])+";
» r = regexp(str, pat, 'tokens')
% name = ‘6.057-staff’
» domain = r{l}{2}; % domain = '‘mit.edu’
Set the root defaults by using the handle O
» get (0, ‘Default’)
» set (0, ‘DefaultlLinelLineWidth’, 2);

Edit the datatip text display function to show customized
information

You can also import Java classes (but don't)
» import java.util.Scanner

If you're not sure about something — just ask Matlab why

» name = r{l}{1l};

mailto:w-.])+@([\w
mailto:6.057-staff@mit.edu

Making GUIs

o It's really easy to make a graphical user interface in Matlab

e To open the graphical user interface development
environment, type guide

» guide
> Select Blank GUI

) GUIDE Quick Start Q@@

Create New GUI | Open Existing GUI

GUIDE templates Preview

) Blank GUI {Default) '

4\ GUI with Uicontrols
4\ GUI with Axes and Menu
4\ Modal Question Dialog

BLANK

[[] save new figure as: i l

I OK][Cancel][Help]

7

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Draw the GUI

e Select objects from the left, and draw them where you
want them

wf untitled.fig Q@@

File Edit Yiew Layout Tools Help

Nod $2R90 | aBBHdE BH% P

E] A
Push Button
]
e Push Button =
:

<
Taq: pushbuttonz Current Point: [S51, 326] Position: [450, 239, 69, 31]

v

8

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Change Object Settings

e Double-click on objects to open the Inspector. Here you can
change all the object's properties.

wf untitled.fig Q@@ ‘éhl_l_l_gpector uicontrol (pushbutton... E]@@
File Edit WView Layout Tools Help @ (A7 w3 =
U(_’%H *3\3%1)0 $B&]ﬁ Igag b rUrncoize o 7 A
T . FontUnits points -
| FontWeight normal -
.. _ [+ ForegroundColor K .
sDraw Image = Handlevisibility on -
.. - HitTest on =
@ Horizontalalignment center -
Interruptible on -
axesi KeyPressFon A @
ListboxTop 1.0 &
Max 1.0 &
Min 0.0 &
[# Position [89.8 25.846 13.8 2.5...
SelectionHighlight on -
[+ SliderStep [0.010.1]
String @‘ Draw Image &
Style pushbutton -
Tag pushbuttoni &
TooltipString &
UIContextMenu <Mone> v
Units characters -
UserData E’ [0x0 double array] &
< > Value @l [0.0]
o Tag: pushbuttoni Current Point: [13, 316] Position: [450, 337, 69, 33] Visible on ~ E
—

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Save the GUI

e When you have modified all the properties, you can save
the GUI

e Matlab saves the GUI as a .fig file, and generates an m-file!

w1 untitled. fig

File Edit VYiew Layout Tools Help
DEd sm@9 0 2HMhd Q% P fr ~
[E] [[v - - queue -
Save As: J P
Save in: IB Day5 :J & &% Ea- on =
— closereq &
My Recent &
Doiiments o =
= [[-0.2-0.077]
Desktop &
i on -3
) ’
S My Documents [0.0; 1.0; 0.9254901...
callback -
g’ on v
= My Computer off 2
on v
. m—
My Network — File name: IlestGUl Z] Save | ¢
Places 7 &
+— Save as type: lFigures (*fig) _1] Cancel | none v
[. Untitled &
& = NextPlot add -
10 Taaq: figurel Current Point: [13, 416] Position: [520, 380, 560, 420] MumberTitle fF M|

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Add Functionality to M-File

e To add functionality to your buttons, add commands to the
‘Callback’ functions in the m-file. For example, when the

user clicks the Draw Image button, the
drawimage Callback function will be called and executed

e All the data for the GUI is stored in the handles, so use set
and get to get data and change it if necessary

e Any time you change the handles, save it using guidata
» guidata (handles.Figurel,h handles) ;

75
76 % ——- ExXecutes on button press in drawimage.
77 function drawimage Callback(hObject, eventdata, handles)
78 % hObject handle to drawimage (see GCEO)
79 % eventdata reserved - to be defined in a future wversion of MATLAEB
80 % handles structure with handles and user data (see GUIDATAL)
g1
82
83 % ——-- Executes on button press in changeColormap.
84 function changeColormap Callbacki{hObject, eventdata, handles)
85 % hObject handle to changeColormap (see GCEO)
g6 % eventdata reserved - to be defined in a future wversion of MATLAEB
87 % handles structure with handles and user data (see GUIDATA)
88
© textFile.txt x| numbers.txt x| testGULm x|
R testGUI

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Running the GUI

e To run the GUI, just type its name in the command window
and the GUI will pop up. The debugger is really helpful for
writing GUIs because it lets you see inside the GUI

) testGUI

Change Colormap

5 10 15 2

12

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

e Use keyboard to allow debugging from command window.
GUI variables will appear in the workspace. Use return to

exit debug mode
e Use built-in GUI modals for user input:
» uigetfile

» uiputfile
» inputdlg

»And more... (see help for details)

13

e Interactive graphical environment
e Block diagram based MATLAB add-on environment

e Design, simulate, implement, and test control, signal

processing, communications, and other time-varying
systems

14

Simulink 5.0.2. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Getting Started

e In MATLAB,
Start Simulink

eCreate a new

H‘_él IEQ, New Variable = |« Analyze Code i.ii

l_:v_lj' Qpen Variable = o f_{} Run and Time

....... : ¥ s Favorites — o :
Clear Workspace ~ ¥ (5 Clear Commands v

Open | -|Compare Import _ Simulink
o Data Worksp:

EEEL E} EE:' 9 L Find Files

FILE | VARIABLE SIMULINK

@ = 5 ol = [/ » Users » nalezyty » Documents » MATLAB
Current Folder @ Command Window

L] Simulink Library Browser

File Edit Yiew Help

?D = = ;{Erder search term v‘” L'g‘,‘

S | m LI I | I"] k fl I e J / Libraries Library: Simulink ’ Search Results: (none)

similar to how

you make a new - coriingss

script

=1~ Tl Simulink A~

~Commonly Used Blocks 0
2 5P Commeonly Used Blocks
~Discontinuities
—Discrete h Continuous
~Logic and Bit Operations
~Lookup Tables
- hdath Mneratinne m ~
15

MATLAB R2019b and Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective

holders.

www.mathworks.com/trademarks

Simulink Library Browser

e The Library Browser contains various blocks that you can
put into your model

e Examine some blocks:

» Click on a library: “"Sources”
— Drag a block into Simulink: "Band limited white noise”

> Visualize the block by going into "Sinks”
— Drag a "Scope” into Simulink

1=} Simulink Library Browser g@@ I=] untitled *

File Edit ! File Edit View Simulation Format Tools Help

i D @ |i[emersoochtem] 0 [DFES sBE [¢y =

Libraries Library: Simulink/Sources | Search Results: (none) ‘
=~] Simulink ~
- Commonly Used Blocks

- Continuous

- Discontinuities

|>

Band-Limitad White Noise) ot g@g =1 untitled *

ile Edt “iew Hel File Edit View Simulation Format Tools Help
wonetose || O @ = [ilmersearchtern V@M E 000000000 DBE& 4BE (=2 ¢ (a0
Libraries || Library: SimuiinkiSinks ‘ Search Results: (none) |

=)~] Simulink ~

- Commonly Used Blocks

~Discrete

~Logic and Bit Operations
--Lookup Tables

- Math Operations
-~Model Verification

- Model-Wide Utilties
-Ports & Subsystems b
- Signal Attributes

- Signal Routing

- Sinks

- Sources

Clodk

>

-~ Continuous Display
Constant) .
- Discontinuities

Discrete X -.]“P-J .@
K § . Floating Scope Band-Limited Scope
Counter Free-Running Logic and Bit Operations ihite Noise

EE e EF

- Lookup Tables
- Math Operations Outt

ser-Defined Functions Counter Limited Ready ~Model Verification
-~~Model-Wide Uilties
- Ports & Subsystems b Scope
- Signal Attributes
- Signal Routing
1 6 - Sinks Stop Simulation /

- Sources

MATLAB version 7.6.0 and Simulink 7.1. Courtesy of The MathWorks, Inc. Used withopermission. MATLAPB and Simulink are registered tradgmiarks of The MathiVorks,

Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

=
=

www.mathworks.com/trademarks

Connections

e Click on the carat/arrow on the right of the band
limited white noise box

e Drag the line to the scope

> You’ll get a hint saying you can quickly connect
blocks by hitting Ctrl

» Connections between lines represent signals

° CI i C k th e p I a j b u tt O n File Edit View Simulation Format Tools Help

O & & = : 4 100 |Nomal

e Double click on the scope.

» This will open up a chart of the variable over the
simulation time 17

Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective
holders.

www.mathworks.com/trademarks

Connections, Block Specification

e To split connections, hold down ‘Ctrl” when clicking on a
connection, and drag it to the target block; or drag
backwards from the target block

e To modify properties of a block, double-click it and fill in
the property values.

m Source Block Parameters: Band-Limited White ... @ J@@
Band-Limited White MNoise. {mask) {link)

D EE& The Band-Limited White Noise block generates normally distributed LI
random numbers that are suitable For use in continuous or hybrid
systems.

E’ testModel *

Parameters

Noise power:

= *
Sample time:

Band-Limitdl
White Nois \0'1 ‘
Seed:

[23341] |

Interpret vector parameters as 1-D

QK] [Cancel] [Help]

18

Ready 100% oded4S Y/

Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective
holders.

www.mathworks.com/trademarks

Behind the curtain

(4

e Go to “"Simulation”->"Configuration Parameters’
at the top menu

See 0de45? Change the solver type here

Simulation time

Start time: | 0.0 Stop time: | 10.0

Solver options

Type: Variable-step E] Solver: ode45 (Dormand-Prince) |Z|
Max step size: auto Relative tolerance: | 1e-3

Min step size: auto Absolute tolerance: | auto

Initial step size: auto

Consecutive min step size violations allowed: | 1

States shape preservation: Disable all IEI

Tasking and sample time options

Tasking mode for periodic sample times: Auto
[] Automatically handle rate transition for data transfer

[Higher priority value indicates higher task priority

Zero crossing options

Zero crossing control: Use local settings E Zero crossing location algorithm: |Non-adaptive El
Consecutive zero crossings relative tolerance: | 10¥128%eps Zero crossing location threshold: | auto

Number of consecutive zero crossings allowed: | 1000
19

Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective
holders.

www.mathworks.com/trademarks

Exercise: Bouncing Ball Model

e Let’s consider the following 1 dimensional problem

e A rubber ball is thrown from height hO with initial velocity
vO in the z-axis (up/down).

e When the ball hits the ground (z=0), its velocity
instantaneously flips direction and is attenuated by the
impact

¢$Volg +

J
h 3(\/

20

Let’s consider the following 1 dimensional problem
A rubber ball is thrown from height hO with initial velocity
v0 in the z-axis (up/down).

When the ball hits the ground (z=0), its velocity
instantaneously flips direction and is attenuated by the

impact
2
m% =mg v(t)= % V(f+ Z:o) = _Kv(t_ Z:o)

z(t=0)=h, v(t=0)=v,

Integrating, we can obtain the balls height and velocity as a
function of time

t

v(t):j;gdz' ()= [v()dz

O 21

Exercise: Simulink Model

e Using the second order integrator with limits and reset,
our model will look like this

bouncingBall * ‘ E‘M
File Edit View Display Diagram Simulation Analysis Code Tools Help

e - B8 -E- 40P ©- 2 Momal v @~ @~
 boundinggall }

@ |[PalbouncingBall 2

To Workspace
9.8

Gravity l l

P{u x4
X
Position
Scope

1
15 »|x L
o 2
inita ox
Position > dxu Velocity l_l
R [5] Integrator,
» Second-Order
Scopet
Initial
Velocity
08 1 I <
Attenuation Memory
»
Ready 130% oded5

22
Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective
holders.

www.mathworks.com/trademarks

Exercise: Simulink Results

e Running the model yields the balls height and velocity as a

function of time
Scope M‘

Position

Velocity

23

. = 4
Simulink 7.1. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective
holders.

www.mathworks.com/trademarks

Math

» Takes the signal and performs a math operation
» Add, subtract, round, multiply, gain, angle

Continuous

» Adds differential equations to the system

» Integrals, Derivatives, Transfer Functions,
State Space

Discontinuities
» Adds nonlinearities to your system

Discrete
» Simulates discrete difference equations
» Useful for digital systems

24

Building systems

e Sources
» Step input, white noise, custom input, sine

wave, ramp input,
» Provides input to your system
e Sinks

» Scope: Outputs to plot
» simout: Outputs to a MATLAB vector (struct) on

workspace
» Matlab mat file

25

e Don’t do nasty calculations by hand!
e Symbolics vs. Numerics

Disadvantages

solution

eCan make solutions
accurate

eEasy to code

Symbolic | eAnalytical solutions | eSometimes can't be
eLets you intuit solved
things about eCan be overly
solution form complicated
Numeric | eAlways get a eHard to extract a

deeper understanding

eNum. methods
sometimes fail

eCan take a while to
compute

26

Symbolic Variables

e Symbolic variables are a type, like double or char

e To make symbolic variables, use sym

» a=sym('1/3"');

» b=sym('4/5") ;

» mat=sym([1 2;3 4]);
» fractions remain as fractions

» c=sym('c','positive');
» can add tags to narrow down scope
> see help sym for a list of tags

e Or use syms
» syms X y real
» shorthand for x=sym('x’,'real"); y=sym('y','real");

27

Symbolic Expressions

° MUIt|p|YI add, divide eXpressionS
» d=a*b e
> does 1/3*4/5=4/15, 4/15

» expand((a-c)”*2); —— [ans =
1/9-2/3 % c+c 2

» multiplies out

» factor (ans) » |ans =
1/9% (3%c-1) "2

» factors the expression

» pretty (ans) > 2

> makes it look nicer

28

Cleaning up Symbolic Statements

» collect (3*x+4*y-1/3*x"2-x+3/2%*y)

> collects terms > [ans =
2*r+11/2%y-1/3*x"2

» simplify (cos(x)*2+sin(x)*2) » [ans =
1

» simplifies expressions

» subs('c”*2',c,5) O
» replaces variables with numbers 25

or expressions. To do multiple substitutions
pass a cell of variable names followed by a cell of values

» subs('c*2',¢c,x/7) » [ans =

x"2/49

29

More Symbolic Operations

e We can do symbolics with matrices too
» mat=sym('[a b;c d]"');
» mat=sym('A%d3sd', [2 2]);
» symbolic matrix of specified size

» mat2=mat*[1 3;4 -2];— | arasn 3+aczen]
» compute the product [c+4%d, 3*c-2*d]
» d=det (mat) > |d =
> compute the determinant &=—C
» i=inv (mat) i=
- i the inverse o, o

e You can access symbolic matrix elements as before
» 1(1,2)

+ [ans =
30 -b/ (a*d-b*c)

e The equation of;a circle2 of radius r centered at (a,b) is
given by: (x—a) +(y—-b) =+’
e Use solve to solve this equation for x and then for y

e It's always annoying to integrate by parts. Use int to do

the following integral symbolically and then compute the
value by substituting O for a and 2 for b: »

j xe dx

a

31

e The equation of;a circle2 of radius r centered at (a,b) is
given by: (x—a) +(y—-b) =+’
e Use solve to solve this equation for x and then for y

» syms a b r xvy
» solve (' (x-a)”*2+(y-b)*2=r*2','x")
» solve (' (x-a)”*2+(y-b)*2=r*2','y"')

e It's always annoying to integrate by parts. Use int to do

the following integral symbolically and then compute the
value by substituting O for a and 2 for b: »

j xe dx
» Q=int ('x*exp(x)',a,b) ¢
» subs (Q,{a,b},{0,2})

32

Image Processing

e http://www.mathworks.com/help/images/index.html

Documentation Center

5 Trial Software 5 Product Updates [Share
= Search R2013b Documentation n
0
€ w
L
t
Q
o ;
Image Processing Toolbox R2013b
Getting Started iRelease Notes

> Import, Export, and Conversion
Image data import and export, conversion of image types and classes

> Display and Exploration
Interactive tools for image display and exploration

> Geometric Transformation, Spatial Referencing, and Image Registration
Scale, rotate, perform other N-D transformations, provide spatial information, align images using automatic or control point registration

> Image Enhancement
Contrast adjustment, morphological fitering, deblurring, and other image enhancement tools

> Image Analysis
Region analysis, texture analysis, pixel and image statistics

Color
Color transforms, support for International Color Consortium (ICC) profiles

Code Generation
Generate C/C++ code and MEX functions for toolbox functions

GPU Computing
Run image processing code on a graphics processing unit (GPU)

Classes E‘ PDF Documentation
33

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

http://www.mathworks.com/help/images/index.html
www.mathworks.com/trademarks

Image enhancement
» Adjust image contrast, intensities, etc.

Filtering and deblurring
» Convolution and deconvolution

Finding edges

» Image gradient, edge
Finding circles

» Hough transform

Training an object detector
» Computer vision toolbox: trainCascadeObjectDetector

34

e Image Restoration
» Denoising

e Image Enhancement & Analysis

» Contrast Improvement
— imadjust, histeq, adapthisteq

» Edge Detection

- edge

»Image Sharpening
»Image Segmentation

e Image Compression
» Wavelet toolbox (Chap. 3 of Gonzalez book on DIP)

Lena image © Playboy. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

35

ocw.mit.edu/help/faq-fair-use

e In this exercise, first we want to load the image
“pout.tif”. You can use imread.

e Then for a better comparison we want our image
to have a width of 200 pixels. Use imresize

e Finally, we want to compare the results of three
functions imadjust, histeq, adapthisteq for

contrast enhancement. Display the original image
and the three enhanced images in a single figure.

36

Exercise: Contrast Improvement

» % Loading the our image into the workspace

» Image = imread('pout.tif');

»

» % For comparison, it is better to have a predefined width

» width = 200;

»

» % Resizing the image using bicubic interpolation

» dim = size (Image) ;

» Image = imresize (Image , width * [dim(1l) / dim(2) 1] , 'bicubic');
»

» % Adjusting the contrast using imadjust

» Image_imadjust = imadjust (Image) ;

»

» % Adjusting the contrast using histogram equalization

» Image_histeq = histeq(Image) ;

»

» % Adjusting the contrast using adaptive histogram equalization
» Image adapthisteq = adapthisteq(Image) ;

»

37

Exercise: Contrast Improvement

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

% Displaying the original image and the results in a single figure to compare with each other
figure

subplot(2 , 2 , 1);

imshow (Image) ;

title('Original Image');

subplot(2 , 2 , 2);
imshow (Image imadjust) ;
title('Enhanced Image using Imadjust');

subplot(2 , 2 , 3);
imshow (Image_histeq) ;
title('Enhanced Image using Histeq');

subplot(2 , 2 , 4);

imshow (Image adapthisteq) ;
title('Enhanced Image using Adapthisteq');

38

Exercise: Contrast Improvement

Original Image Enhanced Image using Imadjust

Enhanced Image using Histeq

«3

1o

0
A

39

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

www.mathworks.com/trademarks

e We know that edge detection is mainly highpass
filtering the image.

e First load the image “circuit.tif” and then plot the
edges in that figure using the function edge and
the filters ™“sobel”, “prewitt”. Also use
“canny” as another method for edge detection
using edge.

40

41

Exercise: Edge Detection

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

»

I = imread('circuit.tif');
I1 = edge(I , 'sobel');

I2 = edge(I , 'canny');

I3 = edge(I , 'prewitt');
figure

subplot(2 , 2 , 1);
imshow (I) ;

title('Original Image') ;

subplot(2 , 2 , 2);
imshow (I1) ;
title ('Edges found using sobel filter');

subplot(2 , 2 , 3);
imshow (I2) ;

title ('Edges found using the "canny" method') ;

subplot(2 , 2 , 4);
imshow (I3) ;

title ('Edges found using prewitt filter');

Original Image Edges found using sobel filter

42
© Steve Decker and Shujaat Nadeem. All rights reserved. This content is excluded from our Creative Commons license. For more information,

see https://ocw.mit.edu/help/faq-fair-use/

ocw.mit.edu/help/faq-fair-use

e Commonly-used: imread, imwrite, imshow, imresize
» im = imread('pout.tif')
% image included in toolbox
» imtool (im) ;
» Convenient for editing in figure window

e Adjust intensity values / colormap
» imadjust(im) ;
» Increase contrast
(1% of data saturated at low/high intensities)
» imadjust(im,[.4 .6],[0 1]);
» Clips off intensities below .4 and above .6
Stretches resulting intensities to 0 and 1
» What happens if used [1 0] instead of [0 1]7?
> Also works for RGB; see doc

43

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

www.mathworks.com/trademarks

Filtering and Deblurring

Pillbox filter:

f = fspecial('disk',10)
imblur = imfilter (im, £)
deconvblind (imblur, £f) ;

e e

Linear motion blur:
f=fspecial('motion’ ,30,135);
imblur = imfilter (im, £f);
deconvblind (imblur, £) ;

Deblurring
deconvblind Deblurimage using blind deconvolution
deconvlucy Deblurimage using Lucy-Richardson mj

deconvreg Deblur image using regularized filter

deconvwnr Deblur image using Wiener filter

44

Lena image © Playboy. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

ocw.mit.edu/help/faq-fair-use

e Image gradients: imgradient, imgradientxy
e Application: edge
» edge(im); % Sobel
» edge(im, 'canny') ;
e Images must be in grayscale
» rgb2gray

Original
(coins.png) Sobel Laplacian Canny

Coins image courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

Lena image © Playboy. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

ocw.mit.edu/help/faq-fair-use
www.mathworks.com/trademarks

46

Other Cool Stuff

Finding circles

» im = imread('coins.png') ;

» [centers,radii,metric] = imfindcircles(im, [15 30]);

» Finds circles with radii within range, ordered by strength

» imshow (im)

» wviscircles (centers(1l:5,:),

Extract other shapes

with Hough transform

radii(1:5));

Image Analysis

Object Analysis
bwboundaries
bwtraceboundary
corner
cornermetric
edge
hough
houghlines
houghpeaks
imfindcircles
imgradient

imgradientxy

Trace region boundaries in binary image
Trace objectin binary image

Find corner points in image

Create corner metric matrix from image

Find edges in intensity image

Hough transform

Extract line segments based on Hough transfor
Identify peaks in Hough transform

Find circles using circular Hough transform
Gradient magnitude and direction of an image

Directional gradients of an image

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

www.mathworks.com/trademarks

... and also Computer Vision

http://www.mathworks.com/help/vision/index.html

Documentation Center

S Trial Sotware & ProductUpdates [Share

Search R2013b Documentation

@

Contents

R2013b
Release Notes

> Video Input, Output, and Graphics
Importing, exporting, color space formatting, conversions, display, annotation

> Registration, Camera Calibration, and Stereo Vision
Registration, stereo rectification, camera calibration, disparity map computation

Object Detection, Motion Estimation, and Tracking
Object detection, optical flow, block matching, background estimation

Geometric Transformations
Similarity, affine, and projective transformations

Filters, Transforms, and Enhancements

FIR fitering, frequency and Hough transforms, Gaussian pyramiding, deinterlacing, contrast enhancement, noise removal

> Statistics and Morphological Operations
Statistical operations, morphology, connected component analysis

> Code Generation and Fixed-Point Design
C Code generation, fixed-point data type support

> Define New System Objects
Write MATLAB class that defines new kind of System object™

Classes Functions System Objects Blocks PDF Documentation
47

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of

their respective holders.

http://www.mathworks.com/help/vision/index.html
www.mathworks.com/trademarks

... and also Computer Vision

e http://www.mathworks.com/help/vision/functionlist.html

Feature Detection, Extraction, and Matching

detectFASTFeatures
detectHarrisFeatures
detectMinEigenFeatures
detectMSERFeatures
detectSURFFeatures
extractFeatures
extractHOGFeatures
matchFeatures
showMatchedFeatures
binaryFeatures
cornerPoints
SURFPoints
MSERRegions
vision.BoundaryTracer
vision.CornerbDetector

vision.EdgeDetector

Find corners using FAST algorithm

Find corners using Harris—Stephens algorithm
Find corners using minimum eigenvalue algorithm
Detect MSER features

Detect SURF features

Extract interest point descriptors

Extract Histograms of Oriented Gradients (HOG) features
Find matching features

Display corresponding feature points

Object for storing binary feature vectors

Object for storing corner points

Object for storing SURF interest points

Object for storing MSER regions

Trace object boundary

Detect corner features

Find object edge

Also consider OpenCV+MATLAB
http://www.mathworks.com/dis

covery/matlab-opencv.html

48

Object Detection, Motion Estimation, and Tracking

configureKalmanFilter

disparity

trainCascadeObjectDetector I

d Aty
detectHarrisFeatures
detectMinEigenFeatures
detectMSERFeatures
detectSURFFeatures
extractFeatures
extractHOGFeatures
insertObjectAnnotation
assignDetectionsToTracks
matchFeatures
cornerPoints

SURFPoints

MSERRegions
vision.KalmanFilter

vision.BlockMatcher

vision.CascadeCbjectDetector

vision.ForegroundDetector

vision.HistogramBasedTracker

vision.OpticalFlow
vision.PeopleDetector

vision.PointTracker

Create Kalman filter for object tracking

Disparity map between stereo images

Train cascade object detector model

Find corners using FAST algorithm

Find corners using Harris—Stephens algorithm

Find corners using minimum eigenvalue algorithm
Detect MSER features

Detect SURF features

Extract interest point descriptors

Extract Histograms of Oriented Gradients (HOG) features
Annotate truecolor or grayscale image or video stream
Assign detections to tracks for multiobject tracking
Find matching features

Object for storing corner points

Object for storing SURF interest points

Object for storing MSER regions

Kalman filter for object tracking

Estimate motion between images or video frames
Detect objects using the Viola-Jones algorithm
Detects foreground using Gaussian mixture models
Histogram-based object tracking

Estimate object velocities

Detect upright people using HOG features

Track points in video using Kanade-Lucas-Tomasi (KLT) algoritrlm

vision.TemplateMatcher

Locate template in image

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks

of their respective holders.

http://www.mathworks.com/help/vision/functionlist.html
http://www.mathworks.com/discovery/matlab-opencv.html
www.mathworks.com/trademarks

Object Detection

Train a cascade object detector (introduced in R2013a)

http://www.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html
http://www.mathworks.com/help/vision/ref/traincascadeobjectdetector.html

Inputs to trainCascadeObjectDetector:
» Image files with bounding boxes for positive instances
» Image files of negative instances (‘background”)
» Optional: FP/TP rates, # cascade stages, feature type
Output: An XML file with object detector parameters

» detector=vision.CascadeObjectDetector('my.xml"') ;

Use the detector on new images:
» bbox=step (detector, imread('testImage.]jpg'))

See links above for full example

49

http://www.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html
http://www.mathworks.com/help/vision/ref/traincascadeobjectdetector.html
http://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetectorclass.html

Machine Learning (Stats Toolbox)

e http://www.mathworks.com/help/stats/index.html

Supervised Learning

Regression, support vector machines, parametric and nonparametric classification, decision tred

w

Linear Regression
Multiple, stepwise, multivariate regression models, and more

Nonlinear Regression
Nonlinear fixed and mixed-effects regression models

Generalized Linear Models
Logistic regression, multinomial regression, Poisson regression, and more

Classification Trees and Regression Trees
Decision trees for regression and classification

Support Vector Machines
Support vector machines for binary classification

Discriminant Analysis
Linear and quadratic discriminant analysis classification

Naive Bayes Classification
Train Naive Bayes classifiers

Unsupervised Learning
Clustering, Gaussian mixture models, hidden Markov models

Hierarchical Clustering
Produce nested sets of clusters

k-Means Clustering
Cluster by minimizing mean distance

Gaussian Mixture Models
Cluster based on Gaussian mixture models using the EM algorithn

Hidden Markov Models
Markov models for data generation

Cluster Evaluation
Evaluate number of clusters

Nearest Neighbors
Find nearest neighbors for classification

Model Building and Assessment

c : w : :

50

48

Ensemble Learning
Ensembles for Boosting, Bagging, or Random Subspace

Boosting
Improve predictions using AdaBoost, RobustBoost, GentleBoost, and mor|

Bagging
Improve predictions using bootstrap aggregation

Random Subspace
Improve predictions using random subspace

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of

their respective holders.

http://www.mathworks.com/help/stats/index.html
www.mathworks.com/trademarks

Matlab can interact directly with many forms of external
hardware, from lab equipment to standalone micro-
controllers

Interaction can be done at various levels of abstraction

Ideal when processor intensive DSP is required and target
system cannot handle it on it's own

Probably not suitable for real-time systems due to the
communication overhead

51

e Most basic link — through the serial port using serial
» 8 = serial(‘com3’)
» Can also provide additional properties,
see help serial
e From here on, treat s as a file handler
» fopen (s)
» fwrite (s, data)
» fprintf(s, ‘string’);
» res = fscanf (s) ;

e Don't forget to close!
» fclose(s) ;

52

GPIB - General Purpose Interface Bus (IEEE-488)

Created by HP in the 1960’s, but highly adopted today in
many lab instruments

A standardized communication protocol for sending and
receiving information

Simply create using the command gpib
» g = gpib(‘agilent’, 7, 1);
> See help gpib for option details
» From now on, treat as file handler
» fopen (qg) ;
» fprintf (g, ‘*IDN?')
» idn = fscanf(g);

Don’t forget to close!
» fclose(qg) ;

53

Higher Levels

Customized function packages for different platforms
created by Mathworks and the user community

http://www.mathworks.com/hardware-support/home.html
http://makerzone.mathworks.com/

54

http://www.mathworks.com/hardware-support/home.html
http://makerzone.mathworks.com/

Where to go from here

6.555 Biomedical Signal and Image Processing*

EdX MATLAB courses
https://www.edXx.org/learn/matlab

GNU Octave (free software implementation of MATLAB)
https://www.gnu.org/software/octave/

MathWorks itself?

*and probably many other courses I'm not aware of

55

https://www.edx.org/learn/matlab
https://www.gnu.org/software/octave/

MATLAB is a MATrix LABoratory; optimized for parallel
processing of large data

It simplifies your computation, but cannot provide insights
on its own

Use MATLAB to process data, but always interpret results
yourself

When possible, vectorize computations for faster results
Use help all day and every day

If in doubt, Google your problem: MATLAB has excellent
online documentation, and Stack
Overflow has tons of answers

Master the use of traceback and
debugging tools

Have fun!

56

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	Lecture #1 - Introduction to MATLAB
	Lecture #2 - Visualization and Programming
	Lecture #3 - Solving Equations, Curve Fitting, and Numerical Techniques
	Lecture #4 - Advanced Methods
	Lecture #5 - Various Functions and Toolboxes
	Blank Page

